
2007 Int’l Conf. on Dublin Core and Metadata Applications

10

Annotation profiles: Configuring forms to edit RDF

Matthias Palmér
Royal Institute of

Technology,
Sweden

matthias@csc.kth.se

Fredrik Enoksson
Royal Institute of

Technology,
Sweden

fen@csc.kth.se

Mikael Nilsson
Royal Institute of

Technology,
Sweden

mini@csc.kth.se

Ambjörn Naeve
Royal Institute of

Technology,
Sweden

amb@csc.kth.se

Abstract
Most of today's generic annotation tools for semantic web metadata (RDF) are designed for
experts. People with no or little knowledge about RDF are therefore forced to use simplified and
often domain-specific tools that work with fixed sets of metadata elements. This paper introduces
the Annotation Profile Model as a configuration mechanism from which annotation tools can be
automatically generated. The intention is to encourage metadata- or domain experts to define
annotation profiles according to metadata vocabularies. This will allow end-users or
administrators to select appropriate annotation profiles for the task at hand, and then an editor
will be provided by the underlying system. This paper discusses the design of the Annotation
Profile Model, which consists of a data-capturing part (the Graph Pattern Model) and a
presentation part (the Form Template model). An implementation that can generate both web-
based and standalone editors is also introduced.
Keywords: application profile; RDF editing; SPARQL; Fresnel; XForms.

1. Introduction
The intention of this paper is to outline how to build flexible, reusable and standards-compliant

annotation tools that allow editing of metadata records, expressed in RDF, in an end-user friendly
manner. The solution discussed here, the Annotation Profile Model, is a configuration mechanism
for such annotation tools, used to adapt them to a specific metadata vocabulary, interaction style,
and appearance. The term “annotation” in “annotation profile” and “annotation tool” was chosen
to imply the human authoring of metadata. This should be contrasted with the term “application”
in “application profiles” (Heery et al., 2000) where the main purpose is instead to guide
application developers and improve interoperability.

1.1. Annotation Tools
Annotation tools with RDF support can be divided into three categories according to their

adaptability to different kinds of metadata. First, fixed annotation tools have little or no
adaptability as they are hard-coded to support a specific metadata vocabulary. Second,
configurable annotation tools can be adapted by switching between configurations. Such
configurations are typically developed by experts for compliance with specific metadata
vocabularies and/or domain specific extensions. Third, generic annotation tools can edit any
metadata by more or less exposing the underlying RDF data or ontologies.

For several reasons, generic annotation tools are not recommended for end-users with little or
no technical background. First, expressing metadata directly in RDF requires expert knowledge
and careful editing to comply with metadata the vocabularies used. Second, if the starting point is
editing RDF rather than providing information according a specific standard or schema, guidance
and editing scope will be lacking. Third, a user interface aimed at end-users should only require
conceptual understanding of what metadata is.

The usefulness of fixed annotation tools can also be challenged but for different reasons than
for generic annotation tools. One reason concerns the way in which metadata vocabularies are
developed. Greater requirement for interoperability, not only by using specific standards but also

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108640

 Int’l Conf. on Dublin Core and Metadata Applications 2007

11

across standards and domains of use, requires adaptable annotation tools. Furthermore, if several
persons are involved in an editing process, then - depending on their skill and competence - they
may need to edit different kinds of metadata. In practice this translates to being able to handle
greater diversity of metadata, for example to easily switch between or include new elements and
vocabularies. Another reason is that in order to minimize the amount of reinvention (implicitly
cost of developing metadata intensive applications), speed of development, as well as provide a
more capable editing environment, annotation tools need to be independent and reusable
components. Fixed annotation tools are per definition less independent and reusable than
configurable annotation tools.

1.2. Configurable Annotation Tools
This leaves us with the category of configurable annotation tools. This paper focuses on a

language-neutral interface that we term the Annotation Profile Model for capturing the
configurations of configurable annotation tools, first introduced in Annotation Profile
Specification (Palmér et al., n.d.). For simplicity, the Annotation Profile Model has been
restricted to supporting only a form-based approach to editing. Other uses are not prohibited -
only not prioritized in the design. An important requirement is that a form for editing can be
generated automatically from an annotation profile. The structure, style, interactivity and which
metadata record that is edited is specified in the annotation profile, and is consequently reflected
in a generated form. A metadata record translates to a small graph around a central resource in
RDF. The RDF statements of this graph may originate from a single metadata vocabulary or, if so
desired, originate from several distinct vocabularies.

Annotation tools that are possible to configure do exist, for example Reggie that uses schema
files (DSTC, n.d.) for configuration and the Semantic MediaWiki (Völkel, 2006) that uses
semantic templates that can be configured in order to edit RDF. These configurations are neither
complete nor general enough, for the way of configuring editors that we aim for. The annotation
profile model described here is used in the SHAME library1, a software library on top of which
various configurable annotation tools can be built. The library has been developed by the authors
and it will be briefly introduced at the end of this paper.

1.3. Structure of this Paper
The rest of the paper will go through the Annotation Profile in some detail, however, for those

who require a more complete description, the Annotation Profile Specification (Palmér et al.,
n.d.) provides much more detail. Section 2 goes through the requirements and section 3 compares
the Annotation Profile Model with existing initiatives. In section 4 the Annotation Profile Model
design is introduced and it is followed by a section on the implementation in the SHAME library.
Finally there are some concluding remarks and acknowledgments.

2. Requirements
Annotation profiles are meant to be specific enough to allow user-friendly form-based editors

to be generated automatically. What user-friendly means depends on who the user is. We foresee
three different user roles involved in the editing process: annotation profile author, annotation
profile facilitator, and end-user. Even though the same person can play more than one role,
Annotation Profiles are mainly targeted at simplifying the editing process for end-users:

With these different roles in mind, we need to agree on what can and should be configured in
advance in an annotation profile and what is suitable to leave to the end-user.

1 Written in Java and available through LGPL license, see http://shame.sf.net.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108640

2007 Int’l Conf. on Dublin Core and Metadata Applications

12

TABLE 1. User roles, corresponding tasks and their required knowledge.

User role Task Required knowledge

Annotation
Profile Author

Creates or modifies Annotation Profiles. Experts on schemas/ontologies
and/or domain experts

Annotation
profile
facilitator

Defines requirements for annotation
profiles, selects annotation profiles and
makes them available in an application
for a specific group of people

Knowledgeable on the tasks of
the group and where to find useful
Annotation Profiles

End-user Edits metadata in an editor generated
from an Annotation Profile

Conceptual understanding of the
metadata and the domain

First, the end user should not be bothered with the value type, that is, which RDF expression to
use (for example a literal or a resource). Second, we believe that the input style, that is whether to
input text by hand or choose from a predefined list, should also be defined by the annotation
profile author. For example, when editing the title of a resource, it is natural to edit it directly as a
text string (value type=literal, input style=edit). On the other hand, when providing type of a
resource it is suitable to choose a URI from a list (value type=Resource, input style=select).

We will now continue by going through the requirements on Annotation Profiles divided into
four categories: completeness, structure, interaction, and presentation:

TABLE 2. Four categories of requirements on Annotation Profiles.

Category Description of category

Completeness includes support for editing arbitrary well-formed RDF triples, i.e. according
to all value types described above. Support for RDF containers and collections
are also required. The Annotation Profile should specify which statements to
edit and which to leave untouched.

Structure includes cardinality constraints and order of selected statements. A direct
correspondence between the graph structure and its presentation in the form
should not be enforced. For example, it should be possible to hide a
complicated graph-structure with intermediate resources from the end-user,
and it should be possible to introduce pedagogical/cosmetic groupings of
statements when the graph-structure is too flat.

Interaction includes hints on how to choose values from vocabularies/ontologies, e.g.
check-boxes, radio-buttons, drop-down menus, or search-dialogs. It also
include mechanisms for string validation according to datatypes, control of
auto-complete mechanisms etc.

Presentation includes multilingual labels and descriptions to aid the user in deciding how to
edit. Font, color, indentations, borders, and everything else that has to do with
appearance is also included here.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108640

 Int’l Conf. on Dublin Core and Metadata Applications 2007

13

Note that a few of these requirements overlap with what can be derived from RDF Schemas or
OWL ontologies, e.g. cardinality constraints in OWL. When such information exists, profile-
based editors are required to make use of it, allowing annotation profile authors to avoid
duplication of information.

3. Background
This section presents existing initiatives and standards that are relevant for Annotation Profiles.

We briefly investigate how they support the requirements in the previous section, see section 4,5,
and 6 in (Enoksson et al., 2006) for a longer analysis.

3.1. Application Profiles
The concept of an Annotation Profile can in part be derived from the concept of an Application

Profile (Heery et al., 2000). Application profiles specify which metadata to use in a specific
application. Hence, a better name would be the application's metadata profile. The major
purposes of an Application Profile are to be informative for developers, and to encourage
interoperability. In contrast, an Annotation Profile has the additional purpose of allowing
automatic generation of user interfaces for the metadata decided upon.

The main idea behind application profiles is to describe how a certain application can mix-and-
match metadata terms/elements/properties from existing vocabularies/schemas/ontologies. In
(Heery et al., 2000) the use of application profiles is described as:

Typically implementors are part of larger communities, they form part of a sector
(education, cultural heritage, industry, government), possibly a subject-grouping, they
are part of programmes with common funding, they work with others serving the same
target audiences. In order to work effectively these communities need to share
information about the way they are implementing standards. Communities can start to
align practice and develop common approaches by sharing their application profiles.

The paper (Nilsson et al., 2006) suggests a framework for Dublin Core metadata that aims for
greater interoperability between metadata standards, within which application profiles play an
integral part. There are also some attempts at formalizing application profiles, such as the initial
guidelines available in (Baker et al., 2005). This document does not provide a machine-readable
expression but briefly mentions earlier attempts at this, such as SCHEMAS and MEG. All these
initiatives focus on reusing and refining terms accompanied with context-specific vocabulary
restrictions. Even if application profiles would be ready for machine processing today, they still
would not resolve issues regarding cardinality restrictions, order and grouping, labeling and
layout in the user interface, as well as various other interaction-specific issues, even though an
application profile can form a good basis for an annotation profile.

3.2. RDF Schema and OWL
One approach is to use RDF Schema or OWL as the configuration mechanism. Unfortunately,

neither of them is enough to cover our requirements. RDF Schema, or more correct RDF
vocabulary language, provides many useful instructions for configuring an editor, e.g. labels and
range restrictions. However, there is neither any cardinality restrictions, nor any support for
ordering or grouping of properties, see section 5.2.2 in (Enoksson et al., 2006). OWL, on the
other hand, provides cardinality restrictions but not much more from the configuration
perspective, see section 5.2.3 in (Enoksson et al., 2006). Both RDF Schema and OWL lack the
ability to select which properties to use, and they cannot express whether a blank node or URI
should be used, neither whether a literal should have a language or not. Furthermore, there is little
or no support for our requirements on the presentation or interaction categories outlined above.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108640

2007 Int’l Conf. on Dublin Core and Metadata Applications

14

3.3. Fresnel Display Vocabulary
Fresnel (Bizer et al., 2005) is a vocabulary for displaying RDF in a browser-independent

fashion. Fresnel introduces the concept of a lens to specify a set of properties that should be
displayed for a certain set of resources. Moreover, it provides formats for specifying formatting
instructions on individual properties or sets of resources. Fresnel makes use of RDF Schemas
when they are available for labeling and for prioritizing between lenses and formats. Since
Fresnel is intended for presentation purposes only, it is hardly surprising that it does not support
cardinality restrictions and language control. To extend Fresnel to be useful for editing seems to
be feasible on a technical level, and the documents describing Fresnel clearly state that an editor
extension is encouraged.

3.4. XForms
XForms (Boyer, n.d.) is a browser-independent technology intended, among other things, to

replace forms in HTML. XForms splits into a form model and a user interface. The form model
describes what XML data to edit. The user interface makes use of a fixed set of form controls,
e.g. input, text-area, trigger, choice, label, etc., that can be freely mixed with e.g., XHTML. Each
form control may be rendered differently depending on the type of browser, as well on as the
supported media types.

XForms cannot be used to edit RDF. However, much inspiration can be found in the design of
XForms. For example, the distinction between the form model and the user interface has inspired
the separation of annotation profiles into graph patterns and form templates, see section 4.

4. Design of Annotation Profile Model
We will now introduce the Annotation Profile Model as a platform- and language-independent

information model. This independence means that for every programming language and
sometimes for each platform this interface needs to be realized as an API. Furthermore,
acknowledging the usefulness of OWL, SPARQL, Fresnel etc., a dedicated syntax for
representing and exchanging Annotation Profiles will not be provided. Instead, our focus is on
allowing Annotation Profiles to be defined by expressing information that is complementary to
existing expressions in OWL, SPARQL, Fresnel etc.

As made explicit in the structure category, a deviation between the original RDF graph and its
presentation in the form is sometimes requested. Furthermore, the interaction and presentation
categories provide requirements of another character, sometimes without any relation to the
underlying representation in RDF. In order to address this we have divided the Annotation
Profiles Model into two parts, the graph pattern model and the form template model:
• The Graph Pattern Model is responsible for capturing and creating subgraphs of triples,

hence playing the roles of a query and template language at once. The Graph Pattern Model
introduced below is heavily inspired by the SPARQL language, borrowing some of its
terminology to increase understanding. However, SPARQL, as well as other RDF query
languages, are ill-suited as a dedicated syntax for two reasons. First, they are too complex and
include capabilities that makes creation of new triples undefined, e.g., disjunction. Second,
choosing a single syntax, such as SPARQL, would make our approach less compatible with
other approaches such as Fresnel. However, subsets and restrictions of existing query
languages, such as SPARQL or QEL will be identified and mapped to the Graph Pattern
Model.

• The Form Template Model provides order, grouping and pedagogical/cosmetic deviations
from the RDF structure that is sometimes needed. The Form Template Model is a tree with
references to variables of the Graph Pattern Model. The nodes of the tree also provide
information on interactions, labels, descriptions and hooks for external style sheets etc.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108640

 Int’l Conf. on Dublin Core and Metadata Applications 2007

15

The Annotation Profile Model has now been described as consisting of these two parts, the
graph pattern and the form template. The generation of a GUI from a specific annotation profile
requires several steps. First the RDF graph is bound in a intermediate and internal format, a set of
variable bindings, via the graph pattern. Second the set of variable bindings is combined with the
form template to generate an abstract representation of the form, the form model, to be displayed
later in the GUI. Finally the GUI is generated from the form model and provides editing
capabilities through manipulation of the form model. These manipulations are fed back into the
graph pattern via the underlying variable bindings. See the FIG. 1 for an illustration of how of the
data flows from the RDF graph to the user interface via the annotation profile.

In the following subsections we start from the user perspective and introduce the form template
model first as it has very close ties to the user interface. After that we go through the Graph
Pattern Model with the aim to understand how data in RDF graphs are created and matched.

4.1. The Form Template Model
In order to understand the needs of form templates, let us consider editing the title-, subject-,

and author items of a resource in a form, see the FIG. 2. In this form we see that the title item is a
simple text field, the subject items are drop-down menus of available subjects taken from an
ontology, and the author item is a sub-form containing text fields for the name-, title- and email
item of the author. Breaking the form apart we say that the form consists of items - in this case
four items - where the last item (the author item) has three sub-items. Let us now consider the
constituents of an item.

First, each item has a label, in this case saying 'title', 'subject' (repeated twice), 'author', 'name',
and 'title' respectively. Second, each item may provide input capabilities of various sorts, e.g., a
text field for the title and drop-down menus for the subjects. Note that the author item does not
provide input capabilities since it has sub-items. Third, items can be added or removed via
specific '+' and '-' buttons. The availability of these buttons are due to cardinality restrictions. In
the current example, an unlimited number of subjects and authors is allowed, and hence the
corresponding items have buttons. The title item has a cardinality of one, and therefore it has no
buttons. Furthermore, for every author, the author's name-, title-, and email item has a cardinality
of one, and hence these items have no buttons either. Note that buttons on (parent) items should
not be confused with buttons on sub-items (when they exist).

We now see how the user interface is composed of items. Moreover, which actual items that
are visible in the user interface depends on the Form Template and the data extracted into
variable bindings by the graph pattern. A Form Template provides order, structure, presentation
specifics, variable references, and cardinality restrictions on a set of items. When data in the form
of variable bindings is combined with a form template, the result is a Form Model, see the

FIG. 1. Annotation Profile execution flow.

FIG. 2. An editor GUI for book metadata.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108640

2007 Int’l Conf. on Dublin Core and Metadata Applications

16

illustration in FIG. 3. It is from the resulting Form Model that the user interface shown in FIG. 2
is generated.

It is not always the case that there is a one to one relationship between the Form Model and the
Form Template. In the example above there are two subjects and no email of the author in the
data, which is correspondingly reflected in the Form Model. The Form Template, being a
template, does provide a single subject- and email item, but it allows the Form Model to deviate
according to the specified cardinality restrictions. In general, branches of the Form Template that
reference variables that have no corresponding VariableBindings will be left out of the Form
Model. Branches that reference variables with multiple VariableBindings will be correspondingly
multiplied in the Form Model.

Editing in the user interface is directly transferred into the nodes of the RDF graph via the
VariableBindings. When data is missing, i.e., when there is no VariableBindings for certain
variables, the Form Template is used to provide placeholders for editing in the user interface.
This is the case for the email item in the example above. When such placeholders are
triggered/filled-in, they generate new constructs in the RDF graph via the variable, the closest
VariableBinding, and the corresponding parts of the graph pattern.

The following example shows an XML representation of the form template outlined above:
<FormTemplate xmlns="http://kmr.nada.kth.se/APtags#">
 <Group max="1" vref="X">
 <Label lang="en">Resource</Label>
 <Description lang="en">The resource being edited</Description>
 <Text max="1" vref="T">
 <Label lang="en">Title</Label>
 <Description lang="en">A title of the resource</Description>
 </Text>
 <Choice vref="S">
 <Label lang="en">Subject</Label>
 <Description lang="en">A subject classification</Description>
 </Choice>
 <Group vref="A2">
 <Label lang="en">Author</Label>

FIG. 3. VariableBindings combined with a Form Template produces a Form Model.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108640

 Int’l Conf. on Dublin Core and Metadata Applications 2007

17

 <Description lang="en">An author expressed in vCard</Description>
 <Text max="1" vref="N">
 <Label lang="en">Name</Label>
 <Description lang="en">The full name of a person.</Description>
 </Text>
 <Text max="1" vref="B">
 <Label lang="en">Title</Label>
 <Description lang="en">The title of a person.</Description>
 </Text>
 <Text max="1" vref="E">
 <Label lang="en">Email</label>
 <Description lang="en">An email to the person</Description>
 </Text>
 </Group>
 </Group>
</FormTemplate>

4.2. The Graph Pattern Model
The purpose of the graph pattern model is to provide access to RDF graphs through variables.

Pragmatically this means both capturing existing RDF-data as well as creating new RDF-data.
To capture existing data, a graph pattern behaves like a query, matching triples and consequently
assigning literals and resources to variables. In the simplest case, a graph pattern prescribes an
individual triple, in more complex cases, a graph pattern prescribes sub-graphs consisting of
several interconnected triples. When creating new RDF-data, a graph pattern is used as a
template, where variables indicate the points of possible user input.

Variables may be more or less constrained. From the perspective of capturing, this only affects
the size of the set of matches. However, from the perspective of using the graph pattern as a
template, i.e., from the perspective of creating new metadata, the number of constraints
corresponds to the number of decisions forced on the end-users. From the discussion in section 2,
we concluded that end-users should be required to have only conceptual understanding of
metadata. This translates to constraining variables in the graph pattern so that every variable
corresponds to a given input type, not exposing any details of RDF, such as the value type. This
means more constraints on variables rather than less.

This leaves us with two choices. Either we require that the graph pattern always provides these
constraints explicitly, or we provide a graph pattern default semantics. In compliant graph
pattern engines, default semantics would be enforced. We have chosen an approach with a
default semantics, since it places less restrictions on authors of graph patterns and it is less
sensitive to lacking constraints. There is also the added value of being able to reuse query
expressions for editing purposes without modifications.

The term Graph Pattern is borrowed from SPARQL, even though the intention here is a
restricted form of use. Much like in SPARQL, the basics of the graph pattern is matching
individual triples by Triple Patterns. In FIG. 4, we see how a graph pattern, which is built up of
ten Triple Patterns, is used to capture an RDF graph into a tree of VariableBindings.

The following is two different listings of the graph pattern of the book example expressed in
SPARQL:
SELECT *
WHERE {
 ?X dc:title ?A1.
 ?A1 rdf:type rdf:Alt.
 ?A1 rdfs:member ?T.
 ?X dc:subject ?S.
 ?S rdf:type exvoc:Genre.
 ?X dc:author ?A2.
 ?A2 vc:FN ?F.
 ?A2 vc:TITLE ?B.

SELECT *
WHERE {
 OPTIONAL{ ?X dc:title ?A1.
 ?A1 rdf:type rdf:Alt.
 OPTIONAL{?A1 rdfs:member ?T}}
 OPTIONAL{ ?X dc:subject ?S.
 ?S rdf:type exvoc:Genre }
 OPTIONAL{ ?X dc:author ?A2.
 OPTIONAL{ ?A2 vc:FN ?F }.
 OPTIONAL{ ?A2 vc:TITLE ?B }.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108640

2007 Int’l Conf. on Dublin Core and Metadata Applications

18

 ?A2 vc:EMAIL ?E} OPTIONAL{ ?A2 vc:EMAIL ?E }}
 FILTER isBlank(?A1).
 FILTER isLiteral(?T).
 FILTER isURI(?S).
 FILTER isBlank(?A2).
 FILTER isLiteral(?F).
 FILTER isLiteral(?B).
 FILTER isLiteral(?E) }

The OPTIONAL and FILTER constructions shown to the right are not strictly necessary since

they are automatically inferred through the default semantics, hence they are not shown in FIG. 4
either.

Note that the optional construction means that we are matching triples independently of each
other, for example, if there is a title or not should not affect whether we match a subject or not.
The required triples corresponds to what we termed constraint triple patterns, that is, triple
patterns that have a fixed predicate and object. In most cases, constraint triple patterns are used to
require the existence of specific typings as in the case of the title and subject in the book example.

The priority regarding enforcing default semantic constraints on the graph pattern are the
following: first what is given in the graph pattern expression explicitly, second what can be found
in RDF Schemas/OWL for the predicates and types indicated in the graph pattern, and finally,
what is given by the default semantics of the Graph Pattern Model. See the annotation profile
specification for a more full explanation of this.

FIG 4. An RDF graph is matched into VariableBindings via a graph pattern.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108640

 Int’l Conf. on Dublin Core and Metadata Applications 2007

19

5. Implementation
When designing the annotation profile model, much inspiration and lessons learned have been

drawn from experiences of developing the SHAME library. It was first developed as part of the
SCAM framework (Palmér et al., 2004) for the purpose of providing a web based user interface
for editing RDF in an electronic portfolio application. Since then, it has been redesigned to be
useful also in standalone applications. The SHAME library now almost fully implements the
Annotation Profile Model and is useful for developing configurable annotation tools and
integrating them into specific environments.

SHAME is implemented in the Java programing language and requires an underlying API for
working with RDF. The design allows the RDF API to be easily replaced allowing a tighter
integration with tools with other requirements, however, currently only Jena is supported.

It is important to notice that SHAME is in itself not an annotation tool, instead it is a code
library on top of which various annotation tools can be built. However, two proof of concept
configurable annotation tools are provided in SHAME for demonstration purposes, first Meditor,
a standalone Java Swing based application and second Speed, a simple web based solution using
the Apache velocity template engine for web page creation. Both these tools are configurable in
the respect that they allow end users to select among a list of available Annotation Profiles when
editing. When integrating annotation tools built upon the SHAME library into a surrounding
environment, some adaptation is needed to provide access to the RDF that should be edited. The
SHAME library provides an interface to be implemented exactly for this purpose. For example,
the Meditor tool implements the interface so that RDF is stored directly into files.

Since no dedicated syntax exists, SHAME has been designed to be easily adaptable to different
syntaxes. Currently, a form template is expressed through an RDF/XML syntax, support for an
XML syntax is planned. A graph pattern can be expressed in either SPARQL or QEL – Query
Exchange Language – see (Nejdl et al., 2002) and (Nilsson et al., 2004). Detecting and merging
restrictions from RDF Schema or OWL into the graph pattern remains to be fully supported.

We are currently developing another configurable annotation tool based on SHAME along the
lines of Web2.0, that is, an AJAX based client. We have not chosen to support annotation profiles
directly in the client, as it would mean redeveloping large parts of the SHAME library directly in
javascript, which would also indirectly require an RDF API to be available. Instead, we have
chosen to work directly with form models that are retrieved over a REST based protocol from a
server. The server would need to use SHAME or some other compatible annotation tool library to
provide the form models to the client as well as interact with underlying RDF storages.

6. Conclusions and Future Work
We have introduced the Annotation Profile Model as a complementary configuration

mechanism to RDFS and OWL ontologies for automated configuration of annotation tools. The
purpose of an annotation profile is to make the generated user interface simple enough to be
useful for end-users without knowledge of RDF. Two new user roles were introduced by
necessity: the annotation profile author and facilitator, which, correspondingly, authors and
selects/customizes annotation profiles for the convenience of the end-user in a specific annotation
tool environment.

Of the four categories of requirements, the Annotation Profile Model covers only completeness
and structure fully. For the interaction category, fundamental support for indicating value type
and input style are in place, however, more specific interactions, such as specifying that radio
buttons or drop-down menus should be used, remain to be specified. For the presentation
category, only labels and descriptions are in place. However, hooks for stylesheets are available
for testing in the current implementation. Introducing better support for these two requirement
categories will most likely be inspired by XForms.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108640

2007 Int’l Conf. on Dublin Core and Metadata Applications

20

The SHAME library supports nearly all of the features of the Annotation Profile Model, only

some issues with RDF Schema/OWL remains. Beyond making the SHAME library compliant
with Annotation Profile Model the plan is to build a RESTful annotation tool based on Web2.0
techniques. Another priority is to support more alternative syntaxes as well as align with a future
editing extension of Fresnel. When the Dublin Core Application Profile is a reality, we will also
look into the option of doing automatic conversions or providing complementary information
that would make DCAP expressions directly compatible. For the time being we will closely
watch the development and try to influence in a direction that makes the two initiatives as
compatible as possible.

Finally, it is interesting to note that the approach of dividing the functionality in a graph pattern
and a form template with communication through VariableBindings makes it possible to imagine
editing other data models than RDF by replacing the query/template language. For example, it
would be feasible to edit the content of a relational database through SQL queries, since SQL
resultset would correspond nicely to the set of variable bindings.

FIG 5. The annotation tool Speed, configured by an annotation profile for the general category of LOM used to edit a

book. The demo allows the end user to change both the annotation profile and the language for the user interface.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108640

 Int’l Conf. on Dublin Core and Metadata Applications 2007

21

7. Acknowledgements
This work has been carried out with financial support from the EU-FP6 projects LUISA and
Prolearn, which the authors gratefully acknowledge. We also want to thank Henrik Eriksson,
Jöran Stark, and Jan Danils who did the first implementations of the SHAME library in 2002-
2003.

References
Baker, Tomas, Makx Dekkers, Thomas Fischer, and Rachel Heery. (2005). Dublin Core application profile guidelines.

Retrieved March 27, 2007, from http://dublincore.org/usage/documents/profile-guidelines/.
Bizer, Chris, Ryan Lee, and Emmanuel Pietriga. (2005). Fresnel—Display vocabulary for RDF. Retrieved March 27,

2007, from http://www.w3.org/2005/04/fresnel-info/manual/.
Boyer, John M. (n.d.). XForms 1.1. Retrieved April 16, 2007, from http://www.w3.org/TR/xforms11/.
DSTC, Resource Discovery Unit. (n.d.). Reggie—The metadata editor. Retrieved April 16, 2007, from

http://metadata.net/dstc.
Enoksson, Fredrik, Matthias Palmér, Ambjörn Naeve, Sinuhe Arroyo, David Fuschi, and Tomas Pariente. (2006).

D3.1: State of the art: SWS infrastructure, annotation, LCMS. Retrieved April 16, 2007, from http://www.luisa-
project.eu

Heery, Rachel, and Manjula Patel. (2000). Application profiles: Mixing and matching metadata schemas. Retrieved
March 27, 2007, from http://www.ariadne.ac.uk/issue25/app-profiles/.

Nejdl, Wolfgang, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek, Ambjörn Naeve, Mikael Nilsson, Matthias
Palmér, and Tore Risch. (2002). Edutella: A P2P networking infrastructure based on RDF. Proceedings of the 11th
World Wide Web Conference.

Nilsson, Mikael, and Wolf Siberski. (2004). RDF Query Exchange Language (QEL)—Concepts, semantics and RDF
syntax. Retrieved July 2, 2007, from http://edutella.jxta.org/spec/qel.html.

Nilsson, Mikael, Pete Johnston, Ambjörn Naeve, and Andy Powell. (2006). Towards an interoperability framework for
metadata standards. Proceedings of the International Conference on Dublin Core and Metadata Applications:
Metadata for Knowledge and Learning, Colima, Mexico.

Palmér, Matthias, Ambjörn Naeve, and Fredrik Paulsson. (2004). The SCAM framework: Helping Semantic Web
applications to store and access metadata. Proceedings of the European Semantic Web Symposium.

Palmér, Matthias, Fredrik Enoksson, and Ambjörn Naeve. (n.d.). D3.2: Annotation profile specification. Retrieved
April 16, 2007, from http://www.luisa-project.eu.

Völkel, Max, Markus Krötzsch, Denny Vrandecic, Heiko Haller, and Rudi Studer. (2006). Semantic Wikipedia.
Proceedings of the 15th International World Wide Web Conference.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108640

