
Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

Requirements on RDF Constraint Formulation and Validation

Thomas Bosch
GESIS – Leibniz Institute for the

Social Sciences, Mannheim, Germany
thomas.bosch@gesis.org

Kai Eckert
Research Group Data and Web

Science
University of Mannheim, Germany
kai@informatik.uni-mannheim.de

Abstract
For many RDF applications, the formulation of constraints and the automatic validation of data
according to these constraints is a much sought-after feature. In 2013, the W3C invited experts
from industry, government and academia to the RDF Validation Workshop, where first use cases
have been presented and discussed. In collaboration with the W3C, a working group on RDF
Application Profiles (RDF-AP) is currently established in the Dublin Core Metadata Initiative
that follows up on this workshop and addresses among others RDF constraint formulation and
validation.
In this paper, we present a database of requirements obtained from various sources, including the
use cases presented at the workshop as well as in the RDF-AP WG. The database, which is
openly available and extendible, is used to evaluate and compare several existing approaches for
constraint formulation and validation. We present a classification and analysis of the
requirements, show that none of the approaches satisfy all requirements and aim at laying the
ground for future work, as well as fostering discussions how to close existing gaps.
Keywords: RDF validation; RDF constraint formulation; RDF constraint validation;
requirements; OWL 2; RDF; linked data; semantic web.

1. Introduction
The notion of Linked (Open) Data and its principles clearly increased the acceptance – not to

say the excitement – of data providers for the underlying Semantic Web technology. Early
concerns of the data providers regarding stability and trustability of the data have been addressed
and largely been solved, not only by technical means regarding versioning and provenance, but
also by the providers getting accustomed to the open data world with its pecularities.

Linked Data and RDF, however, still are not the primary means to create, store, and manage
data on the side of the providers. Linked Data is mostly provided as a view on data, a one-way
road, disconnected from the internal data representation. To the obstacles for full adoption of
RDF, possibly comparable to XML, belong the lack of accepted ways to formulate (local)
constraints on data and to validate data. The W3C reports a consensus among 27 participants
from industry, government and academia of RDF Validation Workshop1 that there are the
following needs:

1. Declarative definition of the structure of a graph for validation and description.
2. Extensible to address specialized use cases.
3. A mechanism to associate descriptions with data.

Several use-cases with requirements have been presented at the workshop, further requirements
are described in talks about general approaches and experiences outside of RDF, like Dublin Core
Application Profiles or XML Schema Definitions. An important finding is that there are non-
functional requirements for data validation in a Linked Data setting, particularly the need to

1 RDF Validation Workshop – Practical Assurances for Quality RDF Data. 10-11
September 2013, Cambridge, MA, USA. http://www.w3.org/2012/12/rdf-val/report

95This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136441

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

“communicate the constraints against which data is to be validated in a way which is both easy to
understand by human beings and discoverable by programs.”

SPARQL and SPIN are powerful and widely used for constraint formulation and validation
(Fürber and Hepp, 2010), but constraints formulated as SPARQL queries are not as
understandable as one wishes them to be. Consider the following example of the simple
constraint stating that only dogs are allowed as pets:

SELECT ?this ?subope ?object WHERE {

 ?C owl:allValuesFrom :Dog .

 ?C owl:onProperty :hasPet .

 ?C a owl:Restriction .

 ?this rdf:type ?subC . ?subC rdfs:subClassOf* ?C .

 ?this ?subOPE ?object . ?subOPE rdfs:subPropertyOf* :hasPet .

 FILTER NOT EXISTS { ?object rdf:type :Dog . } }

This query checks the constraint and returns violating triples, but the actual constraint could be

formulated much shorter, for instance using the OWL 2 Functional-Style syntax:

SubClassOf(:strictDogOwner ObjectAllValuesFrom(:hasPet :Dog))

Similarly, but even shorter, as Shape Expression:

<StrictDogOwnerShape> { :hasPet :Dog+ }

Partly as follow-up to the W3C workshop and partly due to further expressed requirements at

the Semantic Web in Libraries conference 20132, the Dublin Core Metadata Initiative in
collaboration with the W3C currently establishes a Working Group for RDF Application Profiles
(RDF-AP WG) that will investigate existing approaches and best-practices, identify possible gaps
and propose practical solutions for the representation of application profiles, including the
formulation of data constraints3. The RDF-AP WG bases its work on currently 8 case studies and
use cases provided by internal and external stakeholders, mostly from the library domain. In a
heterogeneous environment like the Web, there is not necessarily a one-size-fits-all solution,
especially as existing solutions should rather be integrated than replaced, not least to avoid long
and fruitless discussions about the “best” approach.

Our work presented in this paper is supposed to lay the ground for subsequent activities in the
working group. Our contributions are two-fold: first, we propose to relate existing solutions to
specific case-studies and use-cases by means of requirements extracted from the latter and
fulfilled by the former. We therefore created and present an exhaustive database of all
requirements identified in the validation workshop and the RDF-AP WG. Additionally, we added
requirements from other sources, particularly in the form of constraint types that are supported by
existing approaches, e.g., expressible in OWL2.

Second, we use this database to provide an overview on different classes of requirements and
give examples, to what degree these classes of requirements are supported by different
approaches. We want to highlight strengths and weaknesses of these approaches and identify gaps
and possible solutions for their elimination.

2 SWIB13 – Semantic Web in Libraries, 25 - 27 November 2013, Hamburg, Germany.
http://swib.org/swib13/
3 http://wiki.dublincore.org/index.php/RDF-Application-Profiles

96This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136441

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

2. From a Case Study to a Solution (and Back)
In the development of standards, as in software, case studies and/or use cases are usually taken

as starting point. In case studies, the full background of a specific scenario is described, where the
standard or the software is to be applied. Use cases are smaller units where a certain action or a
typical user enquiry is described. They can be extracted from and thus linked to case studies, but
often they are defined directly.

Requirements are extracted from use cases; they form the basis for development and are used
to test the result. We specifically use the requirements to evaluate existing approaches for
constraint formulation and validation. Via the requirements, the approaches get linked to use
cases and case studies and it becomes visible which approaches can be used in a given scenario
and what drawbacks might be faced.

We classify the requirements to provide a high-level view on different approaches and to
facilitate a better understanding of the problem domain. Our database is openly available and can
be extended with new case studies, use cases, requirements and approaches.

Table 1 shows an excerpt from our database. The general structure is a polyhierarchy from
case-studies over use-cases and requirements to solutions. All instances contain at least uplinks to
the next level, i.e., solutions are linked to requirements that they fulfill and possibly requirements
that they explicitly do not fulfill. Requirements are linked to use-cases, which are linked to case
studies.

TABLE 1: Database Examples

ID Title Links Description

Case Studies
CS-1 DPLA UC-1

The Digital Public Library of America maintains an
access portal to digitized cultural heritage objects...
We harvest data using several different methods...4

Use Cases
UC-1 Recommended

Property

CS-1 Some properties may not be mandatory, but may be
recommended to indicate a “value-added” level of
compliance with MAPv3...

Requirements

R-1 Optional
Properties

UC-1 A property can be marked as optional. Valid data
MAY contain the property.

R-2 Recommended
Properties

UC-1, R-3 An optional property can be marked as recommended.
A report of missing recommended properties is
generated. Fulfilled if R-3 is fulfilled.

R-3 Classified
Properties

UC-1 A custom class like “recommended” or “deprecated” can
be assigned to properties and used for reporting.

Solutions
S-1 ShEx R-1/2/3 Fulfilled: R-1 (minimum cardinality = 0, maximum

cardinality = 1). Not fulfilled: R-2, R-3.
S-2 SPIN R-1/2/3 Fulfilled: R-1, R-2, R-3.

The polyhierarchy allows the linking of all elements to more than one parent, requirements

particularly are linked to several use cases. Our goal is to maintain a set of distinct requirements.
Only this way it is possible to evaluate the solutions regarding their suitability for the use cases
and case studies in our database. Use cases can be shared between case studies as well, but this is
harder to maintain as use cases are less formal and often more case specific than a requirement.

4 http://wiki.dublincore.org/index.php/DPLA_RDF_application_profile_use_cases

97This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136441

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

Requirement R-2 is an example, where a link between requirements is established. In this case,
the link is used to point to a requirement that is “broader” than this requirement, i.e., should that
requirement be fulfilled, then this requirement is automatically fulfilled as well. In a similar way
requirements can be linked to duplicates if they should occur. Our goal is a relative stability
regarding the requirements, which then can prove useful to mediate between data and solution
providers.

The database is made available at http://purl.org/net/rdf-validation. The initial
database was created manually and forms the basis of this paper. The web application to access
the database is currently in a beta state and still under development. Nevertheless, the full
database can already be browsed online and interested participants can register and contribute to
the database.

3. Related Work
Requirements engineering is recognized as a crucial part of project and software development

processes. Similar to our collaborative effort, Lohmann et al. propose social requirements
engineering, i.e. the use of social software like wikis to support collaborative requirements
engineering (Lohmann et al., 2009). Their approach focuses on simplicity and supports in
particular the early phases of requirements engineering with many distributed participants and
mainly informal collaboration. They emphasize the social experience of developing requirements
for software systems: Stakeholders are enabled to collaboratively collect, discuss, improve, and
structure requirements. Under the supervision of experts, the requirements are formulated in
natural language and are improved by all participants step by step. Later on, experienced
engineers may clean and refine requirements. As basis for their work, they developed a generic
approach (Softwiki) using semantic technologies and the SWORE ontology for capturing
requirements relevant information semantically (Lohmann et al., 2008). The SWORE ontology,
as well as a prototypical implementation of their approach is available online5. We evaluated the
implementation and the ontology regarding a possible reuse, but it turned out that Softwiki
focuses clearly on the requirements within a traditional software development process, while we
need a broader view including case studies, use cases and various implementing approaches.
Nevertheless we will reuse parts of the SWORE ontology and include links wherever possible.

To the best of our knowledge, there is no comparable prior work regarding the collection of a
comprehensive list of requirements for the formulation and validation of constraints, neither exist
general approaches to compare different solutions based on common or differing requirements.
More related work focuses on specific constraint languages and implementations, which we will
introduce in the next section.

4. Approaches for Constraint Formulation and Validation
In this section, we present current approaches for constraint formulation and validation which

have been the most discussed in the mentioned workshops and WGs. These approaches differ in 2
dimensions: (1) the used constraint language and (2) if they offer validation systems.

OWL, Resource Shapes (ReSh), Shape Expressions (ShEx), Description Set Profiles (DSPs),
SPARQL, and SPIN are the most promising and applied constraint languages. Stardog ICV,
Pellet ICV, and SPIN use OWL 2 constructs to formulate constraints. SPIN6 provides a
vocabulary to represent SPARQL queries as RDF triples and uses SPARQL to specify inference
rules and logical constraints (Fürber and Hepp, 2010). The Pellet Integrity Constraint Validator
(ICV)7 is a proof-of-concept extension for the OWL reasoner Pellet. Stardog ICV8 validates RDF

5 http://softwiki.de/netzwerk/en/
6 http://spinrdf.org
7 http://clarkparsia.com/pellet/icv/
8 http://docs.stardog.com/icv/icv-specification.html

98This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136441

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

data stored in a Stardog RDF database. ReSh9 defines its own RDF vocabulary Open Services for
Lifecycle Collaboration (OSLC) to define constraints (Ryman et al., 2013). ShEx10 also specifies
a new constraint language whose syntax and semantics are similar to regular expressions. DCMI
RDF Application Profile (AP)11 and Bibframe12 are approaches to specify profiles for application-
specific purposes. DCMI RDF-AP uses DSP13 as generic constraint language which is also
intuitive for non-experts. The Bibframe constraint language has a strong overlap with DSP.
Kontokostas et al. define 17 data quality integrity constraints represented as SPARQL query
templates called Data Quality Test Patterns (DQTP) (Kontokostas et al., 2014). Schemarama14 is
based on the Squish RDF language instead of SPARQL. For XML, Schematron15 is an ISO
standard for validation and quality control of XML documents based on XPath and XSLT. XML
Schema16 is the primary technology for specifying and constraining the structure of XML
documents.

In addition to constraint validation languages, SPIN (open source API), Stardog ICV (as part
of the Stardog RDF database), DQTP (tests), Pellet ICV (extension of Pellet OWL reasoner) and
ShEx offer executable validation systems using SPARQL as implementation language.

In this paper, we evaluate to which extend these approaches cover classes of requirements (1)
to express different types of constraints and (2) to formulate constraints. For the formulation of
constraints, it is important that the constraint language is concise and intuitive and that the
declarative constraint language is translated to an implementation language like SPARQL in
order to execute constraint validation automatically. In form of concrete examples, we show how
current approaches can be used to express different types of constraints and how they can be used
together to fulfill the majority of the identified requirements classes.

5. Requirements
Use cases discussed within the scope of the mentioned workshops and working groups led to

the definition of requirements on RDF constraint formulation and validation. We classified these
requirements into the 2 top-level categories ’Constraint Formulation’ and ’Constraint
Expressivity’.

5.1. Formulation of Constraints
Intuitive and concise language. We claim that all constraints can be expressed using the low-

level language SPARQL. The majority of the constraints can also be written more declaratively,
intuitively, and concisely in form of OWL 2 axioms in the concrete syntax Turtle. Although,
OWL 2 is a very expressive language, we cannot express every constraint in OWL 2. The
succeeding existential quantification contains those individuals that are connected by the
:fatherOf property to individuals that are instances of the class :Man. The ontology, the
constraint, and RDF data are expressed with the same OWL 2 axiom and the same concrete
syntax:

[rdfs:subClassOf [

a owl:Restriction;

owl:onProperty :fatherOf;

owl:someValuesFrom :Man]] .

9 http://www.w3.org/Submission/shapes/
10 http://www.w3.org/2013/ShEx/Definition
11 http://dublincore.org/documents/singapore-framework/
12 http://bibframe.org/
13 http://dublincore.org/documents/dc-dsp/
14 http://swordfish.rdfweb.org/discovery/2001/01/schemarama/
15 http://www.schematron.com/
16 http://www.w3.org/TR/xmlschema-1/

99This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136441

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

The main purpose of OWL 2 is to infer new knowledge from existing schemata and data rather
than to check data for inconsistencies. Therefore, most constraint validation approaches define
constraints with other high-level declarative languages, even though most people are familiar
with OWL 2 and its concise human-understandable concrete syntax Turtle. OWL 2 can be used to
describe RDF data, to infer new knowledge, and to validate RDF data using the same expressive
OWL 2 axioms. With XML Schemas, we also structure and validate our data according to that
structure.

Shape Expressions contain elements from regular expressions making the language concise
and intuitive. In the following example, an employee has at least 1 given name, 1 family name,
any number of phone numbers, and 1 mail box:

<EmployeeShape> {

 foaf:givenName xsd:string+ ,

 foaf:familyName xsd:string ,

 foaf:phone IRI* ,

 foaf:mbox IRI }

As different constraints can be expressed with different languages, we propose to use multiple

languages to define constraints depending on the requirements which have to be satisfied.
Translated to implementation language. High-level declarative languages like OWL 2

cannot be executed directly to validate constraints. Therefore, we take a low-level execution
language like SPARQL. Sirin and Tao (2009) showed how constraints can be translated to
nonrecursive Datalog programs for validation and Angles and Gutierrez (2008) explained that
SPARQL has the same expressive power as nonrecursive Datalog programs. As a consequence,
we can also use SPARQL queries to validate constraints. Thus, constraint validation can be
reduced to SPARQL query answering. The participants of the 2013 W3C RDF Validation
workshop agreed that SPARQL should be the language to execute constraint validation17.
Furthermore, all evaluated constraint validation approaches execute constraint validation with
SPARQL. The next SPARQL query shows how the OWL 2 existential quantification is
implemented in SPIN:

CONSTRUCT {

 _:violation

 a spin:ConstraintViolation ;

 rdfs:label ?violationMessage

 spin:violationRoot ?this }

WHERE {

 ?this rdf:type ?subC . ?subC rdfs:subClassOf* ?C .

 ?C owl:someValuesFrom ?CE .

 ?C owl:onProperty ?OPE .

 ?C a owl:Restriction .

 FILTER (sp:not (spl:hasValueOfType (?this, ?OPE, ?CE))).

 FILTER EXISTS { ?this ?OPE ?object . ?object rdf:type owl:Thing . }

 BIND ((...) AS ?violationMessage) . }

RDF representation of constraints. One of the main benefits of SPIN is that arbitrary

SPARQL queries and thus constraints are represented as RDF triples. SPIN provides a
vocabulary, the SPIN SPARQL Syntax, to represent SPARQL queries in RDF. The benefits of an
RDF representation of constraints are:
• constraints can be consistently stored together with ontologies and RDF data

17 http://www.w3.org/2013/09/10-rdfval-minutes

100This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136441

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

• constraints can be easily shared on the web of data
• constraint validation can be executed automatically
• constraints can be processed by a plethora of already existing RDF tools
• constraints are linked to RDF data
The subsequent code snippet demonstrates how SPIN represents SPARQL 1.1 NOT EXISTS

filter expressions in RDF:

FILTER NOT EXISTS { ?person foaf:name ?name }

[a sp:Filter ;

 sp:expression [

 a sp:notExists ;

 sp:elements (

 [sp:subject [sp:varName "person"] ;

 sp:predicate foaf:name ;

 sp:object [sp:varName "name"]])]])

Our approach, which is implemented in Java, executes constraint validation with SPIN. SPIN

templates define the validation of both OWL 2 constraints and constraints only expressible with
SPARQL. These constraints are checked for each resource of the type owl:Thing (all resources
are assigned to the common super-class owl:Thing).

Constraint validation results. Like ontologies, instance data, and constraints, we should also
represent constraint violations in RDF. SPIN templates construct (SPARQL CONSTRUCT)
constraint violation triples containing information about constraint violations, which cannot be
expressed directly in OWL 2:

CONSTRUCT {

 _:icViolation

 a spin:ConstraintViolation ;

 rdfs:label ?violationMessage ;

 spin:violationRoot ?violationRoot ;

 spin:violationPath ?violationPath ;

 spin:violationSource ?violationSource ;

 spin:fix ?violationFix ;

 :severityLevel ?severityLevel }

Constraint violations (of the type spin:constraintViolation) should provide a useful

message (rdfs:label) explaining the reasons why the data did not satisfy the constraints, which
aids data debugging and repair. If we do not state the triples :Peter :fatherOf :Stewie . and
:Stewie a :Man ., the SPIN template checking the OWL 2 existential quantification on the
object property :fatherOf constructs a constraint violation triple raising the message
‘ObjectSomeValuesFrom(:fatherOf :Man) - :Stewie must be an instance of :Man’. Now, you
know exactly why the data violated this constraint and you know where you have to modify your
data. Constraint violation triples contain references to triples causing the constraint violations
(spin:violationRoot) and references to constraints causing constraint violations
(spin:violationSource). In our example, the subject :Peter causes the constraint violation and
the constraint :ObjectSomeValuesFrom constructs the constraint violation triple. To fix
constraint violations we need to give some guidance how to become valid data (spin:fix).
Appropriate triples may point to useful messages explaining in detail how to overcome constraint
violations. Constraint violations can be classified according to different levels of severity
(:severityLevel having controlled vocabulary as range with elements like :Error and

101This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136441

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

:Warning). It is also important to find not validated triples, i.e. triples which have not been
validated by any constraint, as it may be enforced that every triple of the data have to be
validated.

5.2. Constraint Expressivity
Cardinality Restrictions. Class expressions in OWL 2 can be formed by placing restrictions

on the cardinality of object and data property expressions. All cardinality restrictions can be
qualified or unqualified. The class expressions contain those individuals that are connected by a
property expression to at least, at most, and exactly a given number of instances of a specified
class expression. Qualified and unqualified cardinality restrictions can be expressed in OWL 2:

:CE rdfs:subClassOf [

 a owl:Restriction ;

 owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger ;

 owl:onProperty :hasSon ;

 owl:onClass :Man] .

:Peter a :CE ;

 :hasSon :Stewie [a :Man] .

:Peter is an instance of the class expressions containing those individuals having at most 1
son which is :Stewie in the RDF instance data. If we state that :Peter has a second son or if we
do not assign :Stewie to the class :Man, the qualified maximum cardinality restriction will be
violated. SPIN, Stardog, and Shape Expressions are the only approaches with which qualified and
unqualified cardinality restrictions on data and object properties can be specified.

Disjointness. Disjointness of classes and union of class expressions, (class-specific) object and
data properties, and individuals is a very important type of constraints which can be completely
covered with SPIN (implementing OWL 2 constructs). An OWL 2 disjoint union axiom
DisjointUnion(C CE1 ... CEn) states that a class C is a disjoint union of the class expressions
CEi, 1 ≤ i ≤ n, all of which are pairwise disjoint. Each instance of C is an instance of exactly one
CEi, and each instance of CEi is an instance of C18. According to the next disjoint union of 2 class
expressions, each child is either a boy or a girl, each boy is a child, each girl is a child, and
nothing can be both a boy and a girl. As in this example, :Stewie is both a boy and a girl, a
constraint violation is raised:

:Child owl:disjointUnionOf (:Boy :Girl) .

:Stewie a :Child ; a :Boy ; a :Girl .

Disjoint groups of object and data properties can be expressed in OWL 2:

[rdf:type owl:Class ;

 owl:unionOf (

 [rdf:type owl:Restriction ;

 owl:qualifiedCardinality 1 ;

 owl:onProperty foaf:name ;

 owl:onClass xsd:string]

 [rdf:type owl:Class ;

 owl:intersectionOf (

 [rdf:type owl:Restriction ;

 owl:minQualifiedCardinality 1 ;

 owl:onProperty foaf:givenName ;

 owl:onClass xsd:string] .

18 http://www.w3.org/TR/owl2-syntax/

102This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136441

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

 [rdf:type owl:Restriction ;

 owl:qualifiedCardinality 1 ;

 owl:onProperty foaf:familyName ;

 owl:onClass xsd:string])])] .

In this example, we define a shape for persons. A person has either a FOAF name or 1 or more

given names and 1 family name. Although this kind of constraint can be realized in OWL 2, the
definition of disjoint groups of properties is not that intuitive and declarative. Exactly the same
constraint can be expressed more concisely with Shape Expressions:

<PersonShape> {

(foaf:name xsd:string

 |

 foaf:givenName xsd:string+ ,

 foaf:familyName xsd:string) }

Shape Expressions and SPIN are the only approaches to specify disjoint groups of properties

for given classes.
Constraints on RDF Properties. Object as well as data properties may be constrained. The

main component of an OWL 2 ontology is a set of axioms - statements that say what is true in the
domain. OWL 2 provides axioms that can be used to characterize and establish relationships
between object and data property expressions. An object property functionality axiom states that
an object property expression is functional - that is, for each individual x, there can be at most
one distinct individual y such that x is connected by the object property expression to y19. With
Pellet ICV, we can state a couple of object and data property axioms like the following object
property functionality axiom in OWL Turtle syntax (Sirin and Tao, 2009):

:isManufacturedBy a owl:FunctionalProperty .

:Product :isManufacturedBy :Manufacturer1 , :Manufacturer2 .

The object property :isManufacturedBy is defined as functional. The OWL interpretation

would infer that the manufacturers are the same resources, as nothing contradicts the inference
that these two manufacturers are the same and there is no Unique Name Assumption. With
constraint semantics, however, a constraint violation is raised. With Resource Shapes 2.0 and
Shape Expressions it is not possible to declare functionality axioms on object and data properties.
We can define these axioms with SPIN (and OWL 2), Stardog, and Pellet.

Object property paths (supported by Stardog and SPIN) are important constraints within
various domains. Object property chains can be expressed as OWL 2 axioms
SubObjectPropertyOf(ObjectPropertyChain(OPE1 ... OPEn) OPE) stating that, if an individual
x is connected by a sequence of object property expressions OPE1 , ..., OPEn with an individual y,
then x is also connected with y by the object property expression OPE20. As the triple :Stewie
:hasAunt :Carol . is not contained in the following data set, a constraint violation results:

:hasAunt owl:propertyChainAxiom (:hasMother :hasSister) .

:Stewie :hasMother :Lois . :Lois :hasSister :Carol .

19 http://www.w3.org/TR/owl2-syntax
20 http://www.w3.org/TR/owl2-syntax

103This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136441

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

Constraints on RDF objects. For RDF objects, we can state constraints such as allowed
values, default values, and negative object constraints. Resource Shapes 2.0 enables defining
allowed values for RDF objects as well as RDF literals:

:oslc-change-request a oslc:ResourceShape ;

oslc:property :oslc_cm-status .

:oslc_cm-status a oslc:Property ;

oslc:allowedValues :status-allowed-values .

:status-allowed-values a oslc:AllowedValues ;

oslc:allowedValue "Done" , "InProgress" , "Submitted" .

The constraint above specifies the only allowed values of the status data property for change

request resources. If change requests have other status values, constraint violations will be raised.
In addition to Resource Shapes 2.0, the DCMI RDF-APs and SPIN (and OWL 2) allow
specifying allowed values for RDF literals. For RDF objects, we can apply the approaches
Resource Shapes 2.0, Shape Expressions, DCMI RDF-APs, and SPIN (and OWL 2) to define
allowed values.

With DCMI RDF-APs and SPIN, we can declare that RDF objects and literals have to be part
of specific controlled vocabularies. These statements are represented with DCMI RDF-APs using
an RDF triple comprising an RDF subject that is the value RDF node, an RDF predicate
dcam:memberOf, and an RDF object with a corresponding RDF URI Reference being the DCAM
vocabulary encoding scheme URI21. The following excerpt states that a given book is assigned to
the topic ’Ornitology’ which is part of a particular controlled vocabulary:

:Book

 dcterms:subject [

 rdf:value "Ornitology" ;

 dcam:memberOf :ControlledVocabulary] .

Constraints on RDF Literals. Constraint on RDF literals are not that significant in the Linked

Data community, but they are very important in communities like the library domain. For RDF
literals, range-specific, constraining facet-specific, datatype-specific constraints, and language-
specific can be defined. We can restrict the datatypes, RDF literals have to correspond to, with
XML Schema constraining facets. SPIN allows us to implement all constraining facets. DQTPs
enables constraining literal values to match or not to match a certain regex pattern
(xsd:pattern):

SELECT DISTINCT ?s WHERE { ?s %% P1 %% ? value .

 FILTER (%% NOP %% regex (str (? value), %% REGEX %)) }

P1 is the property we need to check against REGEX and NOP can be a not operator (!) or

empty. An example binding could be to check if the dbo:isbn format is different (!) from
“ˆ([iIsSbBnN 0-9-])*$” (Kontokostas et al., 2014). DQTPs also enables constraining literal values
(having a certain datatype) to be or not to be within a specific range (xsd:maxInclusive,
xsd:maxExclusive, xsd:minExclusive, xsd:minInclusive):

SELECT DISTINCT ?s WHERE {

 ?s rdf:type %% T1 %% . ?s %% P1 %% ?value .

 FILTER (%% NOP %% (?value < %% Vmin %% || ?value > %% Vmax %%))) }

21 http://dublincore.org/documents/dc-rdf/

104This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136441

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

For instance, we can restrict geographical longitudes and latitudes (geo:lat, geo:long) of a
spatial feature to be within the range [-90,90] (Kontokostas et al., 2014). Furthermore, we
implemented the constraining facet xsd:whiteSpace in SPIN to avoid leading and trailing white
spaces in literals. Sub-types of language-specific constraints on RDF literals are constraints (1) to
check if a literal for a specific data property within the context of a particular class has a given
language tag, (2) to check whether the literal, within the context of a given property and class, is
missing, or (3) to ensure that resources of a given type must have at most 1 value of a specific
language for a given data property (e.g. a single English (“en”) rdfs:label). Default values can
be defined with Bibframe, Resource Shapes 2.0, and SPIN. For this purpose, SPIN constructors
may contain SPARQL CONSTRUCT queries for specific classes (e.g. USA is the birth country
of each USCitizen):

:USCitizen a rdfs:Class ;

 spin:constructor [a sp:Construct ; sp:text """

 CONSTRUCT { ?this :birthCountry "USA" . } WHERE {} """] .

6. Evaluation
In this section, we evaluate current approaches according to the top-level classification of

constraint validation requirements. This kind of evaluation is crucial for future improvements
regarding constraint formulation and validation of both existing and new approaches. The
underlying facts result primarily from the individual official specifications. We categorize
requirements classes to see which requirements are well, badly, and limited satisfied by which
approaches. The goal of this evaluation is not to completely evaluate all currently available
constraint validation approaches. We want to show in a generic way that none of the current
approaches satisfies all requirements and that different approaches cover different requirements
classes. Case studies and use cases define what requirements classes have to be covered. This
evaluation indicates which approaches to use to cover specific requirements classes and therefore
use cases. There are 2 first level requirements classes: ’constraint expressivity’ and ’constraint
formulation’. Tables 2 and 3 show for each approach what second level requirements classes are
covered to which extent. Numbers in brackets behind requirements classes indicate the number of
requirements contained in that class. Numbers in brackets in table cells indicate that requirements
are limited satisfied.

TABLE 2: Constraint Expressivity

Requirements Classes BF DCMI DQTP Pellet RS SE SPIN Stardog

Disjointness (8) û û 3 û 3 5
Equivalence (4) û û û û 4

Constraints on RDF properties (20) 12 3 1(1) 2 20 7
Constraints on RDF objects (7) 2 2 1 1 3(1) 5 5 2

Constraints on RDF literals (14) 2 2 4 3(1) 2(1) 7
Identification (5) û û û (2) 4 û
Uniqueness (2) 1
Provenance Constraints û û û û û û û û
Constraints on Individuals (6) û û û û 6

Class Relationships (4) 2 1 4 1
Set-Oriented Operations (6) 2 6 3
Property Occurrences (9) 1 1 1 3 6 6 2
Property Restrictions (10) 1 2 2 8 3
Cardinality Restrictions (12) û û 6 û (12) 12 12 3

105This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136441

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

Good Coverage. Although equivalence (e.g. equivalent classes) is only considered by 1
approach (SPIN), all 4 associated requirements are satisfied. 1 approach (SPIN) covers all 20
requirements on RDF properties constraints (e.g. object property paths) and 2 approaches (DQTP
and Stardog) fulfill half of these requirements. Just 1 approach (SPIN) covers 4 of 5 identification
requirements (e.g. to check if IRIs correspond to specific patterns). Class expressions represent
sets of individuals by formally specifying conditions on the individuals’ properties; individuals
satisfying these conditions are said to be instances of the respective class expressions. Sub-
categories of this requirements class are well satisfied by 3 approaches (DQTP, Shape
Expressions, and Stardog) and nearly exhaustively satisfied by 1 approach (SPIN). Class-
relationships (e.g. subsumption) and set-oriented operations (e.g. negation of classes) are not
supported by many approaches. In contrast, property occurrences (e.g. mandatory or optional),
property restrictions (e.g. existential quantifications), and cardinality restrictions are supported by
the majority of current approaches. Constraints on individuals (e.g. negative object property
assertions) are only considered by 1 approach (SPIN) which fulfills all associated requirements.

Limited Coverage. Approach developers should mention requirements which are not covered
exhaustively by current approaches. Only 3 approaches (DQTP, Shape Expressions, and SPIN)
consider disjointness constraints (e.g. class-specific disjoint property groups) and 1 approach
(SPIN) covers 5 of 8 disjointness requirements. 5 of 7 requirements on RDF objects constraints
(e.g. allowed values) can be expressed with 2 approaches (Shape Expressions and SPIN). There
are 2 requirements to ensure uniqueness (e.g. unique URIs), but only 1 approach (SPIN) satisfies
1 requirement. Other approaches do not cover uniqueness requirements.

Bad Coverage. For future development of approaches it is crucial to especially consider
requirements which are currently not satisfied at all by any approach. So far, provenance
constraints are not considered by approach developers. Most approaches satisfy just 2 of 14
requirements on RDF literal constraints (e.g. range of literal values). At least 1 approach (SPIN)
covers 50% of these requirements.

Table 3 shows constraint formulation requirements (classes) and their coverage by current
approaches. Even though, almost each constraint language is intuitive, only 4 constraint
languages can be seen as both intuitive and concise (Pellet, Shape Expressions, SPIN, and
Stardog). 3 of these 4 approaches use OWL 2 as declarative language - the standard language to
define ontologies. Shape Expressions uses a language similar to regular expressions.

TABLE 3: Constraint Formulation

Requirements Classes BF DCMI DQTP Pellet RS SE SPIN Stardog

Intuitive Language ü ü ~ ü ü ü ü ü

Concise Language û û ü ü û ü ü ü

Translated to Implementation Language û û ü ü û ü ü ü

Implemented Constraint Validation û û ü ü û ü ü ü

Implementation Publicly Available û û ü ~ û û ü ~

RDF Representation of Constraints û û û û û û ü û
Constraint Validation Results (10) û û 2 2 û 6 9 1

Five of 8 approaches translate declarative constraints formulations to an implementation

language (e.g. SPARQL) to execute constraint validation. It is very important for future
enhancements by the whole community that implementations are not only existent but also
publicly available. 5 of 8 approaches are implemented, but implementations are publicly available
for only 2 approaches (public availability of implementations is limited for 2 further approaches).
Constraints are represented as RDF triples by only 1 approach (SPIN). RDF should be the natural
and standard format to represent constraints within the Linked Data community. 2 approaches
(Shape Expressions and SPIN) cover almost all requirements on validation results (e.g. providing

106This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136441

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

some guidance how to become valid data). Unfortunately, 3 of the remaining approaches cover
requirements on validation results very poorly.

7. Conclusion and Future Work
Heterogeneous approaches with different strengths and weaknesses are not a bad thing; we do

not expect there to be a one-size-fits-all solution, nor do we aim at creating one. With this paper,
we rather want to raise the awareness towards the differences and commonalities of existing
approaches as well as to shed some light on the different requirements that data providers
currently have. Therefore, we presented our approach to collect case studies, use cases and
especially requirements collaboratively and in structured form. By linking the requirements to
existing constraint languages and validation systems, we could identify strengths and weaknesses,
commonalities and differences not only intellectually, but based on reliable data.

The main purpose of this work is to support discussions of the different approaches and to help
stakeholders in the choice or in the development of appropriate solutions. In the context of
application profiles, where the publication of constraints together with the data model is crucial,
we want to emphasize the need for concise, easy to understand constraint languages. This
requirement is often neglegtected in discussions of approaches. While consistency is
understandably desired, it has to be questioned if one constraint language can fulfill all
requirements without being overly complicated or if different approaches should rather be used
for different classes of requirements. This holds especially for different levels of abstraction, as
the possibility to define constraints on the format of RDF literals compared to constraints on the
availability or special properties of provenance information. Both represent examples where all
current approaches lack proper support.

Gaps within a class of requirements, e.g., disjointness, constraints on RDF objects, or
uniqueness, should be easier to close within the existing approaches. This would lead to a
harmonization of the approaches regarding their expressivity and enable translations in-between
or towards a general constraint language, e.g., the translation of well-readable constraints in any
language to executable SPARQL queries. The latter is especially promising considering that
SPARQL is able to fulfil all functional requirements and already considered by many as a
practical solution to formulate constraints.

As future work, we plan to provide a complete implementation of OWL 2 constraints in form
of SPIN templates to demonstrate this approach. We will extend and maintain the requirements
database and hope to establish it as an important tool for the advancement of constraint
formulation and validation in RDF. Within the DCMI RDF Application Profiles Working Group,
we pursue the establishment of application profiles that among others allow to link constraints
directly to published datasets and ontologies.

Acknowledgements
Kai Eckert is funded by the European Commission within the DM2E project (http://dm2e.eu)

References
Angles Renzo and Gutierrez Claudio. (2008). The expressive power of SPARQL. In Proceedings of the 7th

International Semantic Web Conference (ISWC2008), pages 114–129, 2008.
Fürber Christian and Hepp Martin. (2010). Using SPARQL and SPIN for Data Quality Management on the Semantic

Web. In Witold Abramowicz and Robert Tolksdorf, editors, Business Information Systems, volume 47 of Lecture
Notes in Business Information Processing, pages 35–46. Springer Berlin Heidelberg, 2010.

Lohmann Steffen, Dietzold Sebastian, Heim Philipp, and Heino Norman. (2009). A web platform for social
requirements engineering. In Jürgen Münch and Peter Liggesmeyer, editors, Software Engineering (Workshops),
volume 150 of LNI, pages 309–315. GI, 2009.

107This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136441

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

Lohmann Steffen, Heim Philipp, Auer Sören, Dietzold Sebastian, and Riechert Thomas. (2008). Semantifying
requirements engineering – the softwiki approach. In Proceedings of the 4th International Conference on Semantic
Technologies (I-SEMANTICS ’08), J.UCS, pages 182–185, 2008.

Kontokostas Dimitris, Westphal Patrick, Auer Sören, Hellmann Sebastian, Lehmann Jens, Cornelissen Roland, and
Zaveri Amrapali. Test-driven evaluation of linked data quality. In Proceedings of the 23rd International Conference
on World

Ryman Arthur G., Le Hors Arnaud, and Speicher Steve. (2013) Oslc resource shape: A language for defining
constraints on linked data. In Christian Bizer, Tom Heath, Tim Berners-Lee, Michael Hausenblas, and Sören Auer,
editors, LDOW, volume 996 of CEUR Workshop Proceedings. CEUR-WS.org, 2013.

Sirin E. and Tao J.. (2009). Towards integrity constraints. In Proceedings of the Workshop on OWL: Experiences and
Directions, OWLED 2009, 2009.

Wide Web, WWW ’14, pages 747–758, Republic and Canton of Geneva, Switzerland, 2014. International World Wide
Web Conferences Steering Committee.

108This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136441

