
Leveraging Linked Data Fragments for enhanced data
publication: the Share-VDE case study
Andrea Gazzarini1,2

1SpazioCodice SRL, 01039 Vignanello (VT), Italy
2@Cult/Casalini Libri, 50014 Fiesole (FI), Italy

Abstract
In big data-driven environments, accessing, querying, and processing vast datasets efficiently is chal-
lenging.

Linked Data Fragments (LDF) have emerged as a promising paradigm to address these challenges by
providing a distributed and scalable approach for publishing and serving Linked Data.

As part of the Share-VDE initiative, we developed a set of Web APIs that adopt Linked Data Fragments
and provide the following benefits: real-time RDF generation and publication, on-demand ontology
mapping, and multi-provenance management.

Keywords
Resource Description Framework (RDF), Linked Data Fragments (LDF), Triple Pattern, querying, scala-
bility, BIBFRAME, Web API, SPARQL, Share-VDE,

1. Introduction

Libraries, archives, and museums hold extensive data collections. Unveiling the potential to
harness and disseminate such information to a broader audience could enhance the expansion
of the World Wide Web, foster a culture of knowledge openness, and yield numerous benefits
for all stakeholders in the information ecosystem.

Share-VDE1 is a library-driven initiative to establish procedures for identifying and reconciling
entities, converting data to linked data, and creating a virtual discovery environment based
upon the three-layered structure of the BIBFRAME[1] data model.

We aim to showcase our implementation efforts in enabling real-time, multi-provenance, and
multi-mapping RDF publication by introducing an RDF API layer built upon the innovative
concept of Linked Data Fragments[2].

2. Entities as “Prisms”

Share-VDE manages a multi-tenant Knowledge Base comprising clustered, integrated, and
enriched entities. A tenant is a set of institutions contributing to the same Knowledge base.

DCMI-2024 International Conference on Dublin Core and Metadata Applications
$ a.gazzarini@spaziocodice.com (A. Gazzarini)
� https://www.linkedin.com/in/andreagazzarini/ (A. Gazzarini)
� 0000-0002-4567-8901 (A. Gazzarini)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1https://svde.org

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952407512

mailto:a.gazzarini@spaziocodice.com
https://www.linkedin.com/in/andreagazzarini/
https://orcid.org/0000-0002-4567-8901
https://creativecommons.org/licenses/by/4.0
https://svde.org

Data flows from each institution, and it is processed to create the entities that form the
Knowledge Base.

An institution within a tenant is called a Provenance. The term comes from the PROV-O[3]
ontology, and it is a crucial concept within the Share-VDE dataset: each entity definition is
contributed by multiple institutions, and its properties retain the ownership metadata so the
system always knows who contributed what.

In the example below, a library produces a bibliographic description representing a work, and
then it is sent to Share-VDE. Assuming the system sees that work for the first time, it creates a
new entity (the big triangle in the picture) and assigns it a new Uniform Resource Identifier
(URI).2. The triangle contains the properties derived from the input record; each property is
marked as having been contributed by the library. Note the smaller triangles beside the big one,
which indicate other entities that could potentially be created.3 When other libraries send their
data, the system creates the additional faces using their contributions: the union of all faces
belonging to the same entity forms a prism.

Figure 1: The prism genesis.

Therefore, each entity in the Share-VDE Knowledge Base is a Prism:

• providing a uniform and integrated view of a given concept (e.g., a Work, an Agent, a
Place)

• retaining, on each face, the data contributed by a given library
• assigned to a unique, dereferenceable URI.

2For example, https://svde.org/publications/26211656926171125
3A bibliographic description includes other resources, such as places and agents, other than the work itself.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952407512

https://svde.org/publications/26211656926171125

3. Linked Data Fragments

RDF Data can be provided as a service[4]: an HTTP endpoint where clients can request data
through a structured language like SPARQL[5].

A SPARQL endpoint offers clients powerful access to data. Yet, when the dataset grows,
it comes with significant infrastructure costs: reliable and scalable commercial products are
usually expensive4. How can we provide RDF data and, at the same time, reduce server resource
consumption while maintaining efficient data querying?

Linked Data Fragments represents an elegant approach that helps answer the question
above. A Linked Data Fragments architecture[6] divides the query execution and computation
responsibilities among two players: a Linked Data Fragment Client[7] that provides the SPARQL
endpoint, the query pre-processing, its optimization, and the destructuring of such a query into
a set of atomic clauses that can be executed independently towards distributed Linked Data
Fragment Servers, the second role.

See the following SPARQL query that traverses the Share-VDE core hierarchy:

SELECT ? i t e m U r i
WHERE {

opuses : 4 0 1 b f : h a s E x p r e s s i o n ? workUri .
? workUri b f : h a s I n s t a n c e ? i n s t a n c e U r i .
? i n s t a n c e U r i b f : has I t em ? i t e m U r i .

}

Listing 1: Example SPARQL

The query can be destructured in three separated clauses corresponding to three triple patterns.
Each clause selects a fragment of the entire result; the idea is to expose a service that resolve the
selector pattern, and returns back the corresponding (linked) data fragment. The compounding
fragments of a query response are then merged for creating the final result that is sent back to
the client.

A Linked Data Fragment consists of a selector, metadata (variables, counts, page size), and
controls (hypermedia links or URIs to other fragments). Examples of selectors are

• give me the first 50 triples whose subject is a given URI
• give me the second page of the triples whose subject is a given URI and predicate is

foaf:name
• give me the triples whose object is the literal "Andrea"@it

A triple pattern server[8], that is, a service that answers to a triple pattern request, serves
many small/straightforward requests. As a consequence, the execution requires a low/medium
computation effort compared to a central server that controls the whole query execution.

Everything comes with a price: the Linked Data Fragment Client can perform minimal
optimizations[9] compared with a centralized engine that executes the whole query; also, the
distributed nature of the read path[7] necessarily introduces a higher network latency.

4https://www.w3.org/wiki/LargeTripleStores

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952407512

https://www.w3.org/wiki/LargeTripleStores

4. On-demand RDF Publication: the RDFizer

What is behind a system that provides RDF data? Generally speaking, there is dedicated storage,
usually referred to as a Triple Store, Quad Store, or the more general name, RDF Store.

As the name suggests, a triple store manages RDF natively; it also exposes a SPARQL
endpoint[4] for querying the data. While it is definitely powerful, it assumes a system uses it as
underlying datasource. Share-VDE uses an RDBMS as a primary storage: data is stored using
an agnostic, RDF-unaware shape. How can such a system provide RDF data through a SPARQL
endpoint without having a dedicated RDF storage?

The adoption of the Linked Data Fragment architecture[2] makes possible to move the RDF
publication and generation entirely on the query-time side, therefore enabling the capability
of translating data in RDF in real time. The Share-VDE Linked Data Fragment Server receives
a triple/quad pattern request, reads the data in the RDBMS, according to a given mapping
translates the resultset into RDF, and then it returns the corresponding fragment to a Linked
Data Fragment client, that assembles that together with the other response fragments. The
response is then sent back to the client.

Besides providing RDF without having dedicated RDF storage, such an architecture enables
interesting features, as described in the following paragraphs.

4.1. Multi-mapping

In Share-VDE, data is stored in a relational database using an agnostic format. That means it is
not natively available in RDF5: it is translated on demand by applying a conversion mapping.
Mappings are included in the requests, at query-time: for example, one client would be interested
in receiving data in RDF using a given mix of ontologies (e.g., BIBFRAME6 and RDA7) while
another client could want a different mix (e.g., FRBROO8 and Dublin Core9). Mappings and
mixes are associated with a mnemonic code; clients can use a dedicated HTTP header10 to
indicate the shape of the data they would like to get back in response at query time.

GET / s p a r q l ? query =CONSTRUCT { ? s ?p ? o } WHERE { ? s ?p ? o }
Host : svde . org
Accept : t e x t / t u r t l e , a p p l i c a t i o n / r d f +xml
svde −mapping : b i b f r a m e + rda

@pref ix opus : < h t t p s : / / svde . org / opuses / >
@pref ix svde : < h t t p s : / / svde . org / p r o p e r t i e s / >
@pref ix rdau : < h t t p : / / r d a r e g i s t r y . i n f o / E lements / u / >

5The sentence refers to the new RDFizer architecture described in this document. Instead, the current version uses a
plain RDF Store to serve RDF data.

6https://www.loc.gov/bibframe/
7https://www.rdaregistry.info/
8https://www.cidoc-crm.org/frbroo/home-0
9https://www.dublincore.org/specifications/dublin-core/
10https://datatracker.ietf.org/doc/html/rfc7230#section-3.2

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952407512

https://www.loc.gov/bibframe/
https://www.rdaregistry.info/
https://www.cidoc-crm.org/frbroo/home-0
https://www.dublincore.org/specifications/dublin-core/
https://datatracker.ietf.org/doc/html/rfc7230##section-3.2

@pref ix r d f : < h t t p : / /www. w3 . org / 1 9 9 9 / 0 2 / 2 2 − rd f − syntax −ns # > .
@pref ix b f : < h t t p : / / i d . l o c . gov / o n t o l o g i e s / b i b f r a m e / > .

. . .

opus : 4 0 1 b f : t i t l e svde : 1 2 3 .
svde : 1 2 3 r d f : type b f : T i t l e .
svde : 1 2 3 b f : m a i n T i t l e " P r o i n m o l e s t i e " .
svde : 1 2 3 b f : s u b T i t l e " ipsum " .
opus : 4 0 1 rdau : P60355 " P r o i n m o l e s t i e : ipsum " .

. . .

Listing 2: Example SPARQL exchange using a BIBFRAME + RDA mapping

GET / s p a r q l HTTP / 1 . 1
Host : svde . org
svde −mapping : dc

@pref ix opus : < h t t p s : / / svde . org / opuses / >
@pref ix dc te rms : < h t t p : / / p u r l . org / dc / terms / >
@pref ix r d f : < h t t p : / /www. w3 . org / 1 9 9 9 / 0 2 / 2 2 − rd f − syntax −ns # > .

. . .

opus : 4 0 1 dc te rms : t i t l e " P r o i n m o l e s t i e : ipsum " .
opus : 4 0 1 dc te rms : a l t e r n a t i v e " M o l e s t i e P r o i n " .

. . .

Listing 3: Example SPARQL query exchange using a DC mapping

4.2. Prism face(s) selection

Share-VDE entities are prisms whose faces represent the different contributions of the consor-
tium participants. A client can indicate at request time, through a dedicated HTTP header11,
one or more institutions. In that case, the query execution operates only over the contributions
of the indicated provenances. Instead, if that header is missing, the results would consider all
the prisms without applying any face selection.

11https://datatracker.ietf.org/doc/html/rfc7230#section-3.2

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952407512

https://datatracker.ietf.org/doc/html/rfc7230##section-3.2

Listing 4: SPARQL query with a provenance selector header.

GET / s p a r q l HTTP / 1 . 1
Host : svde . org
svde −provenances :

h t t p s : / / svde . org / a g e n t s / s t a n f o r d ,
h t t p s : / / svde . org / a g e n t s / y a l e

. . . (t r i p l e s b e l o n g i n g t o S t a n f o r d and Y a l e c o n t r i b u t i o n s) . . .

5. Conclusion and future works

The query-time flexibility introduced by Linked Data Fragments paradigm looks promising from
a modularity and extensibility perspective. The new infrastructure opens the Share-VDE RDF
layer to new challenges: additional mappings, more articulated fragment selector expressions,
and write paths (the current implementation focuses only on the read path).

References

[1] Library of Congress, Bibliographic Framework Initiative (BIBFRAME), 2016. URL: https:
//www.loc.gov/bibframe/.

[2] R. Verborgh, M. V. Sande, P. Colpaert, S. Coppens, E. Mannens, R. V. de Walle, Web-
Scale Querying through Linked Data Fragments, 2014. URL: https://ceur-ws.org/Vol-1184/
ldow2014_paper_04.pdf.

[3] "W3C", PROV-O: The PROV Ontology, 2013. URL: https://www.w3.org/TR/prov-o/.
[4] W3C, SPARQL 1.1 Protocol, 2013. URL: https://www.w3.org/TR/sparql11-protocol/.
[5] W3C, SPARQL Query Language for RDF, 2008. URL: https://www.w3.org/TR/

rdf-sparql-query/.
[6] R. Verborgh, O. Hartig, B. D. Meester, G. Haesendonck, L. D. Vocht, M. V. Sande, R. Cyganiak,

P. Colpaert, E. Mannens, R. V. de Walle, Querying Datasets on the Web with High Availability,
2014. URL: https://linkeddatafragments.org/publications/iswc2014.pdf.

[7] J. V. Herwegen, R. Verborgh, E. Mannens, R. V. de Walle, Query Execution Optimiza-
tion for Clients of Triple Pattern Fragments, 2016. URL: https://linkeddatafragments.org/
publications/eswc2015.pdf.

[8] R. Taelman, R. Verborgh, E. Mannens, Exposing rdf Archives using Triple Pat-
tern Fragments, 2016. URL: https://www.rubensworks.net/raw/publications/2016/
ExposingRdfArchivesUsingTpf.pdf.

[9] R. Taelman, J. V. Herwegen, M. V. Sande, R. Verborgh, Optimizing Approximate Mem-
bership Metadata in Triple Pattern Fragments, 2020. URL: https://comunica.github.io/
Article-SSWS2020-AMF/.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952407512

https://www.loc.gov/bibframe/
https://www.loc.gov/bibframe/
https://ceur-ws.org/Vol-1184/ldow2014_paper_04.pdf
https://ceur-ws.org/Vol-1184/ldow2014_paper_04.pdf
https://www.w3.org/TR/prov-o/
https://www.w3.org/TR/sparql11-protocol/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://linkeddatafragments.org/publications/iswc2014.pdf
https://linkeddatafragments.org/publications/eswc2015.pdf
https://linkeddatafragments.org/publications/eswc2015.pdf
https://www.rubensworks.net/raw/publications/2016/ExposingRdfArchivesUsingTpf.pdf
https://www.rubensworks.net/raw/publications/2016/ExposingRdfArchivesUsingTpf.pdf
https://comunica.github.io/Article-SSWS2020-AMF/
https://comunica.github.io/Article-SSWS2020-AMF/

	1 Introduction
	2 Entities as “Prisms”
	3 Linked Data Fragments
	4 On-demand RDF Publication: the RDFizer
	4.1 Multi-mapping
	4.2 Prism face(s) selection

	5 Conclusion and future works

