
Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

Towards Description Set Profiles for RDF using SPARQL as
Intermediate Language

Thomas Bosch

GESIS – Leibniz Institute for the
Social Sciences,

Mannheim, Germany
thomas.bosch@gesis.org

Kai Eckert
Research Group Data and Web

Science
University of Mannheim, Germany
kai@informatik.uni-mannheim.de

Abstract
Description Set Profiles (DSP) are used to formulate constraints on valid data within a Dublin
Core Application Profile. For RDF, SPARQL is generally seen as the method of choice to
validate data according to certain constraints, although it is not ideal for their formulation. In
contrast, DSPs are comparatively easy to understand, but lack an implementation to validate RDF
data. In this paper, we use SPIN as basic validation framework and present a general approach
how domain specific constraint languages like DSP can be executed on RDF data using SPARQL
as an intermediate language.
Keywords: RDF validation; RDF constraint formulation; RDF constraint validation; Description
Set Profiles; DSP; RDF; linked data; semantic web.

1. Introduction
In 2013, the W3C invited experts from industry, government and academia to the RDF

Validation Workshop1 to discuss use cases and requirements for constraint representation and
RDF data validation. The following needs are reported:

1. Declarative definition of the structure of a graph for validation and description.
2. Extensible to address specialized use cases.
3. A mechanism to associate descriptions with data.

An important finding is that there are non-functional requirements for data validation in a
Linked Data setting, particularly the need to “communicate the constraints against which data is
to be validated in a way which is both easy to understand by human beings and discoverable by
programs.”

Partly as follow-up to the W3C workshop and partly due to further expressed requirements at
the Semantic Web in Libraries conference 20132, the Dublin Core Metadata Initiative in
collaboration with the W3C currently establishes a Task Group for RDF Application Profiles
(RDF-AP) that will investigate existing approaches and best-practices, identify possible gaps and
propose practical solutions for the representation of application profiles, including the
formulation of data constraints3. In a heterogeneous environment like the Web, there is not
necessarily a one-size-fits-all solution, especially as existing solutions should rather be integrated
than replaced, not least to avoid long and fruitless discussions about the “best” approach.

SPARQL and SPIN are powerful and widely used for constraint formulation and validation
(Fürber & Hepp, 2010), but constraints formulated as SPARQL queries are not as understandable

1 RDF Validation Workshop – Practical Assurances for Quality RDF Data. 10-11 September 2013,
Cambridge, MA, USA. http://www.w3.org/2012/12/rdf-val/report
2 SWIB13 – Semantic Web in Libraries, 25 - 27 November 2013, Hamburg, Germany.
http://swib.org/swib13/
3 http://wiki.dublincore.org/index.php/RDF-Application-Profiles

129This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136478

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

as one wishes them to be. Consider the following example of the simple constraint stating that
only dogs are allowed as pets:

SELECT ?this ?subope ?object WHERE {

 ?C owl:allValuesFrom :Dog .

 ?C owl:onProperty :hasPet .

 ?C a owl:Restriction .

 ?this rdf:type ?subC . ?subC rdfs:subClassOf* ?C .

 ?this ?subOPE ?object . ?subOPE rdfs:subPropertyOf* :hasPet .

 FILTER NOT EXISTS { ?object rdf:type :Dog . } }

This query checks the constraint and returns violating triples, but the actual constraint could be

formulated easier using Description Set Profiles4:

[a dsp:NonLiteralStatementTemplate;

dsp:property :hasPet;

dsp:nonLiteralConstraint [

 dsp:valueClass :Dog;

]

]

Of course, it can be argued if DSPs are the best possible way to represent constraints. They are,

however, familiar to the DCMI community and tailored to the Dublin Core Abstract Model and
the Singapore Framework. As stated above, there will probably be more than one constraint
language that can be used in an application profile, with DSPs being one of them. This leaves the
question, how the validation of data based on different constraint languages can be implemented.
Different implementations using different underlying technologies hamper the interoperability of
application profiles and a full implementation of several constraint languages is hard to maintain
for solution providers. We therefore propose to use SPARQL as intermediate language:
constraints in arbitrary languages are transformed to executable SPARQL queries used to validate
the data.

This approach obviously requires that all constraint languages can be expressed in SPARQL.
We have no formal proof, as use-cases and requirements still are collected and there is neither a
complete list of possible constraints nor one of supported constraint languages. However, even if
there are constraints that cannot be translated to SPARQL, the subset of supported constraints is
certainly large enough to justify the limitation to SPARQL-expressible constraints at least for one
class of RDF Application Profiles, comparable to the sublanguages of OWL.

This claim is supported by the fact that SPARQL is already widely used for constraint
formulation, as mentioned above. Additionally, Sirin and Tao showed how constraints can be
translated to nonrecursive Datalog programs for validation (Sirin & Tao, 2009), while Angles and
Gutierrez explained that SPARQL has the same expressive power as nonrecursive Datalog
programs (Angles & Gutierrez, 2008).

In this paper, we present our first results regarding the implementation of our approach using
SPIN. We will show that besides SPIN, no further dependencies exist. We create a full validation
environment based on SPIN that can be used to validate domain specific constraint languages
(Section 2). The only limitations are that the constraints have to be expressed in RDF and that the
constraint language is expressible in SPARQL. In Section 3, we introduce Description Set
Profiles as domain specific constraint language and subsequently describe its implementation in

4 In RDF-Turtle Syntax, omitting the surrounding description template, for details refer to http://
dublincore.org/documents/dc-dsp

130This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136478

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

our environment (Section 4). We conclude in Section 5 with a discussion of open questions and
an outlook to the next steps.

2. Validation Environment
We use the SPARQL Inferencing Notation (SPIN)5 to create what we call a validation

environment. The overall idea is that we see constraint languages as domain specific languages
(hence domain specific constraint languages, DSCL) that are translated and executed on RDF
data within our validation environment.

The translation is done once, for instance by the developer of the DSCL, and provided in form
of a SPIN mapping plus optional preprocessing instructions. From a user’s perspective, all that
is needed is a representation of constraints using the DSCL and some data to be validated
against these constraints. All these resources are purely declarative and provided in RDF or as
SPARQL queries. The actual implementation is trivial using SPIN and illustrated in Figure 1.

FIG. 1. Constraint Validation Process

First, an RDF graph has to be populated as follows:

1. the data is loaded that is to be validated,
2. the constraints in the DSCL are loaded,
3. the SPIN mapping is loaded that contains the SPARQL representation of the DSCL (see

Section 4 for a detailed explanation), and
4. the preprocessing is performed, which can for example be provided in the form of

CONSTRUCT queries.
When the graph is ready, the SPIN engine checks for each resource in the RDF data if the

resource satisfies all defined constraints and generates a result RDF graph containing information
about all constraint violations.

With this implementation, there is one obvious limitation of our approach: the DSCL needs an
RDF serialization. For DSP, this is the case, but in the future, we would like to support non-RDF
languages as well. We will further elaborate on this interesting topic in Section 5.

Connect SPIN to your data. SPIN uses templates for SPARQL queries that are executed on
every instance of a given class – for instance :toValidate.

Most of the SPIN mapping that has to be created by the DSCL developer consists of such
templates that are linked to a class for which the constraints should be evaluated:

5 http://spinrdf.org/

131This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136478

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

:ToValidate

 spin:constraint

 [a dsp2spin:StatementTemplates_MinimumOccurrenceConstraint] .

As the mapping is designed to be independent of any actual data, the class :toValidate is

purely generic. Instead of using such a generic class, it is also possible to link the constraints to
owl:Thing or rdfs:Resource, i.e., to all instances.

Neither of these classes have to be assigned explicitly to instances within the data to be
validated. They are either inferred using reasoning or explicitly assigned during the
preprocessing: a reasonable approach would be to assign :toValidate to all classes for which
constraints are actually defined – in the case of DSP classes that are linked via
dsp:resourceClass to a description template; this can be accomplished by a suitable
CONSTRUCT query that is executed before the actual validation.

After preprocessing, the data might look like this – with the added generic class in italics:

:ArtficialIntelligence

 a swrc:Book, :ToValidate ;

 dcterms:subject :ComputerScience .

:ArtificialIntelligence denotes a book with the assigned subject “Computer Science.”
Mapping from a DSCL to SPARQL. The actual mapping is performed by creating appropriate
SPARQL templates for every constraint that is supported in the DSCL, for example a minimum
occurrence that is required:

dsp2spin:StatementTemplates_MinimumOccurrenceConstraint

 a spin:Template;

 spin:body [

 a sp:Construct ;

 sp:templates (...) ;

 sp:where (...)] .

This is the general structure of a SPIN template representing a SPARQL CONSTRUCT query.

We use CONSTRUCT queries to generate descriptions of each constraint violation, for instance:

CONSTRUCT {

 _:violation

 a spin:ConstraintViolation ;

 rdfs:label ?violationMessage ;

 spin:violationRoot ?violationRoot ;

 spin:violationPath ?violationPath ;

 spin:violationSource ?violationSource ;

 spin:fix ?violationFix ;

 :severityLevel ?severityLevel }

In SPIN, such a CONSTRUCT query is represented in RDF as follows:

a sp:Construct ;

sp:templates (

[sp:subject _:violation ; sp:predicate rdf:type ; sp:object spin:ConstraintViolation]

[sp:subject _:violation ; sp:predicate rdfs:label ; sp:object [sp:varName "violationMessage"]]

...) ;

132This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136478

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

Constraint violation triples (1) provide useful messages explaining the reasons why RDF
instances did not satisfy the constraints (rdfs:label), (2) contain references to RDF triples
causing the constraint violations (spin:violationRoot), and (3) include references to the
constraints causing constraint violations (spin:violationSource). Constraint violation triples
give some guidance how to become valid data (spin:fix) in order to be able to fix constraint
violations. Constraint violations can be classified according to different levels of severity
(:severityLevel).

These constraint violation triples are generated for each RDF instance which matches against
the WHERE clause graph pattern in the SPIN template. The SPARQL variable this represents the
current RDF resource for which the constraint is checked.

As the mapping of a DSCL is independent of a concrete constraint specification, all constraints
are generally linked to all instances (of the generic class, if applicable). Therefore, the WHERE
clause of the template always have to restrict on a class for which the constraint was actually
defined, for example in the case of DSP via the resource class:

WHERE { ?this rdf:type ?resourceClass . }

As for the CONSTRUCT part of the query, SPIN represents the WHERE clause in RDF as

well:

[sp:subject [sp:varName "this"] ;

 sp:predicate rdf:type ; sp:object [sp:varName "resourceClass"]]

With this framework, we have all we need to implement our own DSCL, Description Set

Profiles, which we will briefly introduce in the next section. Full examples for SPIN mappings
are provided afterwards in Section 4.

3. DSP as Domain Specific Constraint Language
The Singapore Framework6 is a framework for designing metadata and for defining Dublin

Core Application Profiles (DCAP). The framework comprises descriptive components that are
necessary or useful for documenting DCAPs. A DCAP is a means to assemble and to customize
components from different independently created metadata standards within the context of a
specific community, application, and domain7.

The DCMI Abstract Model (DCAM)8 with its Description Set Model (DSM) forms the basis of
Dublin Core metadata. While the DSM is highly related to RDF, it differs in some aspects worth
mentioning. Table 1 shows the mappings from DSM elements to RDF triples, according to DC-
RDF, the recommendation how Dublin Core metadata is represented in RDF9.

TABLE 1: DSM in RDF

DSM RDF
Description Set RDF graph (containing description RDF graphs)
Description RDF graph
Resource RDF subject: DSM resource URI (or blank node) (root of description RDF graph)

6 http://dublincore.org/documents/singapore-framework/
7 cf. http://dublincore.org/documents/profile-guidelines/
8 http://dublincore.org/documents/2007/06/04/abstract-model/
9 http://dublincore.org/documents/dc-rdf/

133This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136478

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

Statement RDF subject: DSM resource
RDF predicate: RDF property
RDF object: DSM value (surrogate)

Non-Literal Value Surrogate DSM value URI (or blank node)
Vocabulary Encoding Scheme RDF subject: DSM value

RDF predicate: dcam:memberOf
RDF object: DSM vocabulary encoding scheme

Value String RDF subject: DSM value
RDF predicate: rdf:value
RDF object: RDF Literal (DSM value string)
(RDF plain literal or RDF typed literal)

Literal Value Surrogate DSM value is RDF literal
(RDF plain literal or RDF typed literal)

Value String Language Language tag of RDF literal
Syntax Encoding Scheme RDF datatype of RDF typed literal

A Description Set Profile (DSP)10 contains constraints on the data within a DCAP, i.e., a DSP

restricts valid descriptions of resources in a description set. Consider the following example of a
DSP:

:bookDescriptionTemplate

 a dsp:DescriptionTemplate ;

 dsp:standalone "true"^^xsd:boolean ;

 dsp:minOccur "1"^^xsd:nonNegativeInteger ; dsp:maxOccur "infinity"^^xsd:nonNegativeInteger ;

 dsp:resourceClass swrc:Book ;

 dsp:statementTemplate [

 a dsp:NonLiteralStatementTemplate ;

 dsp:minOccur "1"^^xsd:nonNegativeInteger ; dsp:maxOccur "5"^^xsd:nonNegativeInteger ;

 dsp:property dcterms:subject ;

 dsp:nonLiteralConstraint [

 a dsp:NonLiteralConstraint ;

 dsp:descriptionTemplate :subjectDescriptionTemplate ;

 dsp:valueClass skos:Concept ;

 dsp:valueURIOccurrence "mandatory"^^dsp:occurrence ;

 dsp:valueURI :ComputerScience, :SocialScience, :Librarianship ;

 dsp:vocabularyEncodingSchemeOccurrence "mandatory"^^dsp:occurrence ;

 dsp:vocabularyEncodingScheme :BookSubjects ;

 dsp:valueStringConstraint [

 a dsp:ValueStringConstraint ;

 dsp:minOccur "1"^^xsd:nonNegativeInteger ; dsp:maxOccur "1"^^xsd:nonNegativeInteger ;

 dsp:literal "Computer Science"@en , "Computer Science"^^xsd:string ;

 dsp:literal "Social Science"@en , "Social Science"^^xsd:string ;

 dsp:literal "Librarianship"en , "Librarianship"^^xsd:string ;

 dsp:languageOccurrence "optional"^^dsp:occurrence ;

 dsp:language "en"^^xsd:language ;

 dsp:syntaxEncodingSchemeOccurrence "optional"^^dsp:occurrence ;

 dsp:syntaxEncodingScheme xsd:string]]] .

A DSP consists of dsp:DescriptionTemplates that put constraints on instances of a certain

class, denoted by dsp:resourceClass. The constraints can either be constraints on the
description itself, e.g., a minimum occurrence of instances of this class. Additionally, constraints
on single properties can be defined within a dsp:StatementTemplate. The example above
contains all but one of the 23 constraints defined in DSP (except the sub-property constraint; the
5 literal value constraints can be used for value strings as well).

10 http://dublincore.org/documents/2008/03/31/dc-dsp/

134This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136478

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

The DSM description template :bookDescriptionTemplate describes DSM resources of the
type swrc:Book (referenced by dsp:recourceClass). swrc:Book resources are allowed to occur
standalone (dsp:standalone), i.e. without being the value of a property. Books must occur at
least once (dsp:minOccur) and may appear multiple times (dsp:maxOccur) in the DSM
description set (the RDF graph). The dsp:NonLiteralStatementTemplate restricts books to
have at least 1 (dsp:minOccur) and at most 5 (dsp:maxOccur) dcterms:subject
(dsp:property) relationships to DSM non-literal value surrogates which are further described by
the dsp:NonLiteralConstraint.

The DSM values have to be of the class skos:Concept (dsp:ValueClass) and are further
described in a dedicated DSM description template (referenced by dsp:descriptionTemplate).
A value URI must be given (dsp:valueURIOccurrence) for DSM values and allowed value URIs
(dsp:valueURI) are :ComputerScience, :SocialScience, and :Librarianship. Controlled
vocabularies (like :BookSubjects) are represented as skos:ConceptSchemes in RDF and as
dsp:VocabularyEncodingSchemes in DSM. If DSM vocabulary encoding schemes must be
stated (dsp:vocabularyEncodingSchemeOccurrence), they have to contain the DSM values. In
this case, DSM values are classified as skos:Concepts and are related to skos:ConceptSchemes
via the object properties skos:inScheme and dcam:memberOf (see RDF data above).

The DSM values must be represented as exactly one (dsp:minOccur and dsp:maxOccur - line
20) of the given three DSM value strings (dsp:literal). The language tag en (dsp:language) as
well as the RDF datatype xsd:string (dsp:syntaxEncodingScheme) may be stated
(dsp:languageOccurrence and dsp:syntaxEncodingSchemeOccurrence) for DSM value
strings.

An example for RDF data satisfying all these constraints for resources of the type swrc:Book
would be:

:ArtficialIntelligence

 a swrc:Book , :ToValidate ;

 dcterms:subject :ComputerScience .

:ComputerScience

 skos:Concept , :ToValidate ;

 dcam:memberOf :BookSubjects ;

 skos:inScheme :BookSubjects ;

 rdf:value "Computer Science"@en .

:BookSubjects

 a skos:ConceptScheme , :ToValidate .

4. Mapping of DSP Constraints to SPIN
After the introduction of the general approach in Section 2, we now present a concrete example

of a SPIN mapping for a DSP constraint: the DSP statement template constraint ’Minimum
Occurrence Constraint’ (6.1) restricts the minimum number of times the given statement must
appear in the enclosing description.

This constraint is implemented by the following SPARQL query which is then represented in
SPIN RDF and linked to our generic class :ToValidate:

CONSTRUCT {

 _:violation

 a spin:ConstraintViolation ;

 rdfs:label ?violationMessage ;

 spin:violationRoot ?this ;

 spin:violationSource dsp:minOccur }

WHERE {

 ?this rdf:type ?resourceClass .

135This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136478

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

 ?descriptionTemplate rdf:type dsp:DescriptionTemplate .

 ?descriptionTemplate dsp:resourceClass ?resourceClass .

 ?descriptionTemplate dsp:statementTemplate ?statementTemplate .

 ?statementTemplate dsp:minOccur ?minOccurStatement .

 ?statementTemplate dsp:property ?property .

 BIND ((spl:objectCount (?this, ?property)) AS ?cardinalityStatement) .

 FILTER (cardinalityStatement < ?minOccurStatement) .

 BIND ((

 fn:concat('cardinality of ', ?property, ' (', ?cardinalityStatement, ')

 < mininum cardinality of ', ?property, ' (', ?minOccurStatement, ')'))

 AS ?violationMessage) . }

It can be seen that the WHERE clause is used to “detect” constraint violations. First, a graph is

matched that contains the instance data (using ?this as instance variable) and the applicable
constraint formulation from the DSP (linked to the instance via dsp:resourceClass). The
cardinality of the property in question is added. The actual validation is implemented by the
FILTER that identifies only instances that violate the constraint.

In this example, we create a violation message (?violationMessage) that can be displayed to
the user, together with the URI of the instance (?this as spin:violationRoot) and the violated
constraint (dsp:minOccur as spin:violationSource).

According to our DSP, if a resource in the RDF data
1. is assigned to the class swrc:Book (line 5), and
2. has no dcterms:subject relationships (line 8 and 9),
then the following constraint violation triple is generated:

_:violation

 a spin:ConstraintViolation ;

 rdfs:label

 'cardinality of dcterms:subject (0) < mininum cardinality of dcterms:subject (1)' ;

 spin:violationRoot :IntroductionToAlgorithms ;

 spin:violationSource dsp:minOccur .

This example demonstrates how a DSP constraint is implemented in SPARQL. In the same

manner, most other constraints can be implemented as well, although often the mapping gets
substantially longer and more complex. There are, however, constraints that cannot be
implemented at all, in the case of DSP for example the literal value constraint Syntax Encoding
Scheme Constraint (6.5.4). It determines whether DSP syntax encoding schemes (RDF datatypes)
are allowed for RDF literals, which can be ’mandatory’, ’optional’, or ’disallowed’.

This type of constraint cannot be validated as RDF literals always have associated datatype
IRIs. If there is no datatype IRI and no language tag explicitly stated, the datatype of an RDF
literal is implicitly xsd:string. If there is a language tag, the datatype is implicitly
rdf:langString. Fortunately this constraint can be replaced by an equivalent constraint using
Syntax Encoding Scheme List Constraint (6.5.5) which restricts the allowed DSP syntax encoding
schemes and which is fully implemented in the SPIN mapping for DSP.

5. Conclusion and Future Work
With our approach, we were able to fully implement Description Set Profiles, apart from the

exception noted above. The implementation can be tested at http://purl.org/net/rdfval-
demo. In this paper, we describe our general approach and demonstrated its applicability to
Description Set Profiles. In particular, we use SPIN as basis to define a validation environment in
which domain specific constraint languages – like DSP – can be implemented by representing

136This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136478

Proc. Int’l Conf. on Dublin Core and Metadata Applications 2014

them in SPARQL. The approach is particularly appealing as it has only one dependency being
SPIN. The implementation of the DSCL is fully declarative, consisting of a SPIN mapping in
RDF and preprocessing instructions in form of SPARQL CONSTRUCT queries – which can also
be represented in RDF using SPIN. It is therefore possible to link the applicable constraints in a
given DSCL to an application profile, as well as the SPIN mapping and the preprocessing
instructions. All that is needed to validate data according to this application profile without the
need for a DSCL-specific validator. Our approach therefore fulfills an important requirement for
RDF Application Profiles.

A limitation of our approach are constraints that cannot be expressed in SPARQL, as for
example the Syntax Encoding Scheme Constraint of DSP. In this case this is an artefact resulting
from the way how RDF is implemented. There are most certainly other cases, but we argue that
our approach is nevertheless useful for the majority of constraints in the majority of DSCLs. We
propose, however, to document such missing constraints clearly as part of the DSCL so that users
can deal with it.

Our approach is currently limited to DSCLs that are expressible in RDF. This is not necessarily
a problem – the data and the data models are in RDF, so at least it is consistent – but it might be
sub-optimal regarding readability and understandability of the constraints and for now excludes
many existing DSCLs. We therefore plan to investigate this issue further as part of our future
work. Another interesting topic is the testing of the SPIN mappings, for which test data together
with expected outcomes could be provided in a certain form. Our next steps include the
application to further constraint languages, first and foremost OWL2, which is already used by
many to formulate constraints. The DSP mapping is developed and maintained at
https://github.com/dcmi/DSP-SPIN-Mapping.

Acknowledgements
Kai Eckert is funded by the European Commission within the DM2E project (http://dm2e.eu)

References
Angles, R., & Gutierrez, C. (2008). The expressive power of SPARQL. In Proceedings of the 7th International

Semantic Web Conference (ISWC2008) (pp. 114–129).
Fürber, C., & Hepp, M. (2010). Using SPARQL and SPIN for Data Quality Management on the Semantic Web. In W.

Abramowicz & R. Tolksdorf (Eds.), Business information systems (Vol. 47, pp. 35–46). Springer Berlin
Heidelberg. Retrieved from http://dx.doi.org/10.1007/978-3-642-12814-1 4 doi: 10.1007/978-3-642-12814-1 4

Sirin, E., & Tao, J. (2009). Towards integrity constraints. In Proceedings of the Workshop on OWL: Experiences and
Directions, OWLED 2009.

137This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952136478

