
Using the DC Abstract Model to Support Application Profile Developers

Sarah Pulis
La Trobe University
Tel: +61 4 17 574 502
mailto:sarah.pulis@latrobe.edu.au

Liddy Nevile
University of Tsukuba/
La Trobe University
Tel: +61 419 312 902
liddy@sunriseresearch.org

Abstract:
In this paper, we consider the use of the DCMI Abstract Model as a potential vehicle for
communication between developers of metadata application profiles and system
developers. We note that it is not intended to be a developer’s tool and consider what would
make it so while maintaining its semantic integrity so designers of Application Profiles
could also use it. We propose a UML compliant model of the DCAM as a first step towards
the final development of a UML meta-model that will allow for the use of valid UML by
those developing DC conformant Application Profiles. A number of characteristics of the
DCAM are analysed and refinements suggested to enable a UML-conformant version of the
DCAM which is required to build a new UML metamodel for DC Application profile
developers.

Keywords
UML, DCAM, DCMT, Dublin Core, Application Profile, Meta-model.

1 Introduction
This paper is based on real world experience in which an experienced systems architect and
a metadata Application Profile developer tried to work together to construct an Application
Profile that was both easily implemented and Dublin Core conformant. The systems
architect wanted only information expressible in conformant Unified Modeling Language
(UML (i)) that he used to model the system and instruct his developers.
The Metadata Application Profile (MAP) developer was familiar with Dublin Core
Metadata Terms (DCMT) and wanted to satisfy locally specific needs and support the
importation of metadata from other schemas. She wanted to use qualified DCMT to exploit
some of the features of the Semantic Web enabled by the Resource Description Framework
(RDF (ii)).

The first problem encountered was that although UML is in common use for expressing
systems for implementation in standard XML, it could not be used in this case because the
data would need to be in RDF/XML which is not supported well by standard UML (as

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108385

shown below). The second problem was that, while it is possible to use the extension
features of UML to adapt the UML meta-model so that UML could be used, its
development was not possible within the scope of the project.

In this paper, we report on the first stage of our work in the development of a UML meta-
model. It will be used to extend UML in the way proposed, so future MAP developers can
express in UML, a DC Application Profile conformant to RDF, so the programmers can use
RDF/XML. The UML models developed using this meta-model will support but not
require the use of RDF/XML: they will also work for developers who work with standard
XML and other object oriented languages. Our first stage was the step from the first DCMI
Abstract Model (DCAM (iii)) to what we think of as a UML-conformant version of that
model and call the DCAM-UML.

To achieve our goals, we analysed the documentation and graphical representations of the
DCAM, and then we built a UML model with what was available. In some cases, this
meant some interpretation or decisions that may not be accepted by DCMI. We make them
explicit to enable clear decision-making. We intend to use our model, once it is acceptable
to the DCMI, to develop the UML meta-model so that UML can be used as described
above.

2 Dublin Core Abstract Model
The DCAM consists of two models: the DCMI resource model and the DCMI description
model. The models distinguish between the resource being described and the metadata
description of the resource. Both models are described in text and graphically, using the
notation and some of the common constructs of UML class diagrams (such as classes, and
generalization and association relation-ships). It should be noted that its authors, Powell et
al., state that: “the UML modeling used here shows the abstract model but is not intended
to form a suitable basis for the development of DCMI software applications”. Software
developers are, however, explicitly stated to be one of the three target audiences for the
DCAM, the other two being developers of syntax encoding guidelines and of application
profiles.

The first version of the DCAM was a significant achievement, following the earlier
representation of the DCMT as a grammar by Thomas Baker (iv), and the DCAM is an
important base for ongoing work.

3 Unified Modeling Language
The Unified Modeling Language (UML) is used to state explicitly, and in detail, the
decisions made in a system. These decisions apply to all processes in the development and
deployment of a system, from analysis and design to implementation and testing. The UML
is not a visual programming language but a modeling language tailored to but not restricted
to representing object-oriented systems. A set of complete UML diagrams can be mapped
into a specific programming language, such as C++ or Java, or a table in a relational
database.
UML facilitates the documentation of the architecture of a system while the system is being
developed as well as when it is deployed. UML is distinct from any method, methodology

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108385

or software development process. It provides building blocks for system modeling, not the
instructions or method of their use.
3.1 Class Diagrams
Class diagrams are the most commonly used diagrams in the UML diagram set. Class
diagrams are used to model static components of the system, in particular, the vocabulary
database schema of a system, and simple collaborations. Using class diagrams, components
can be shown graphically and mapped to object-oriented programming languages. Complex
class diagrams can be formally sub-divided into packages.
3.2 Class Diagrams and RDF
In UML class diagrams, a property (association or attribute) must be defined relative to a
classifier. A similar principle applies to attributes.
A property is defined in RDF as a first-class entity. It need not have a range or domain. An
RDF property can be defined relative to zero or more classes (domains).
Baclawski et al. (v) removed the domain and range restriction from a UML property so that
a property could be a first-class entity. They used the UML extension mechanism and a
meta-model layer of UML that defines the UML itself. The adjustment at the meta-model
layer has effect at the modeling layer. In fact, they also demonstrated how UML is
extended.
4 Analysis of the DCAM
We look now at some specific characteristics of the DCAM. We are most interested in
those characteristics that make it difficult to represent the DCAM in conformant UML.
4.1 Semantics
In the DCAM, the term ‘semantics’ refers to both informal and formal semantics. Formal
semantics include those shown in the DCMI resource model, such as sub-property and sub-
class and others such as the definition or label of a property or class. Informal semantics
include the ‘meaning’ of a property or class, which can never be formally expressed.

Apparently, the DCMI definition of ‘semantics’ was intentionally left open to include any
and all semantic descriptions (vi). We have a problem with this.

The structure of the DCMI resource model allows only the name of an object, not its
‘formal’ semantics, to be stored. We blame this problem on the definition of semantics.
From a software modeling point of view, a single class cannot represent any and all
semantic descriptions.

4.2 Property and sub-property
In DCMI resource model description, “each property may be related to one or more other
properties by a refines (sub-property) relationship.” In the DCAM UML-type diagram, a
sub-property is modelled as a class not as a relationship between two properties as indicated
in the text description. According to the diagram, a sub-property can be related to zero or
more properties and vice versa. This is known to be a problem (vii).

4.3 Classes and vocabulary encoding scheme

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108385

In the DCMI resource model description, Powell et al. say “where the resource is a value,
the class is referred to as a vocabulary encoding scheme”. A generalisation relationship is
shown in the DCAM description model between what in UML would be defined as the
subclass vocabulary encoding scheme and the superclass class. This relationship enables a
sub-class to be related to a vocabulary encoding scheme. This means that in some cases, a
value is a resource that inherits the relationships of resources (i.e. the relationship between
resource and class and resource and property/value pair).

Although it is understandable that a class such as texts may have a sub-class or be a sub-
class of another class, it is unusual for a vocabulary encoding scheme to be associated with
sub-classes. Nilsson, a co-author of DCAM, confirmed that this decision was intentional
although not all approved of the structure (viii).

4.4 UML Attributes
The DCAM is made up of relationships and classes that do not include any attributes.
Classes must have attribute(s) to be able to store information or values when instantiated.
This problem is similar to the problem in Section 4.1 and occurs throughout the DCMI
description model.

4.5 Metadata Statements
In the DCMI description model, a metadata statement consists of one property URI, zero or
one value URIs, zero or one vocabulary encoding schemes and zero or more value
representations. This allows a metadata statement to consist of a property URI with no
value URI or representation. Similarly, a statement can consist of a property URI and a
vocabulary-encoding scheme without having a value representation or a value URI.

This appears to contradict Baker’s grammar that indicates a Dublin Core statement consists
of a property and a value but Nilsson confirmed it and said it is based on the structure of a
metadata statement (ix). A metadata statement does not include a value but rather includes
an identifier or representation of a value, that is, a value URI or a value representation.
Nilsson argues that even if a value does not have a value URI or a value representation, the
value still exists.

If a metadata statement consists of only one property URI and a value representation, there
is no way to associate the statement with the value, using the DCMI description model
alone or combined with the DCMI resource model. (Alistair Miles noted this on the DCMI
Architecture wiki. (x))

4.6 Value String Language and Syntax Encoding Scheme
In the DCMI description model, a value string can consist of zero or one value string
languages and zero to one syntax encoding scheme URIs. This structure is supported by
the text description but elsewhere it is said the value string language and syntax encoding
scheme URI should be mutually exclusive (xi). The diagram should show that a value
string can have a value string language or a syntax encoding scheme URI, but not both.
4.7 DCAM: 2 models or packages?
The DCAM consists of two logically separate models: the resource model and the
description model. Although the DCAM does not make use of UML packages, it is

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108385

possible that the elements (classes and relationships) in each model could be grouped
together in a single model using the UML construct ‘package’. For this, the elements of the
resource model would be contained within one package and the elements of the description
model would be contained within another.

The problem is that while there is some supporting evidence for this approach, there is also
some that supports thinking that each model is (more or less) a separate model that offers
no more than a different view of the resource description. In UML, packages are formally
structured to form a single model but the DCAM models are not.

5 DCAM-UML
In our UML version of the DCAM, we have made some minor changes to both diagrams.
We adhere to the UML naming convention of starting a class name or new word with a
upper case letter. We use a lower case letter to start an association name/role. We also
correct inaccurate or missing cardinality within the UML diagram.

Figure 1: A UML conformant, modified version of the DCMI resource model.

5.1 Modified DCMI Resource Model
We removed (with no loss of information), the 3 classes of semantics, and refined
class/property semantics that were redundant in the DCMI resource model. We replaced the
class sub-property with a single association relationship between instances of Property. The
cardinality is the same as for the association relationship between property and sub-
property in the DCMI resource model. This avoids the difference between the text
description of a sub-property as a relationship and its representation as a class in the DCMI
resource model. The changes made to property and sub-property also apply to what used to
be class and sub-class in the DCMI resource model.
5.2 Modified DCMI Description Model
Figure 2 is a UML conformant, modified version of the DCMI description model with fixes
for some of the problems identified above.
For ValueRepresentation there is one attribute, lexicalForm with datatype String. The
value string has become two classes: PlainValueString, associated with class
ValueStringLanguage and an attribute language of type string, associated with a
SyntaxEncodingSchemeURI that identifies a SytanxEncodingScheme.
ValueStringLanguage also has one attribute language that has datatype string.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108385

Figure 2: A UML conformant, modified version of the DCMI description model.

6 Outstanding Issues
There are a number of outstanding issues: a value may not be associated with a metadata
statement; there is no way to represent semantics other than through the DCMI description
model (e.g. propertyURI = rdfs:label, value representation = “Title”); there is still some
redundancy between the DCMI resource model and DCMI description model, and a sub-
class can still be associated with a vocabulary encoding scheme.
7 DCMI Meta-model
Having used UML to represent, as best we can, the current DCAM, we now propose a new
UML model based on the DCAM. We use the convenience of UML packages.
7.1 DCMI Metadata Description Diagram
Figure 3 shows our proposed DCMI Metadata Description diagram as a modified version of
the DCMI description model of the DCAM. It includes several major changes.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108385

Figure 3: A DCMI Metadata Description diagram as a modified version of the DCMI description model of the

DCAM.

We have removed the distinction between the resource being described and a metadata
description of a resource. In our diagram, a Statement now consists of one Property and
one Value (solving a problem explained above).

The association relationships between Value and ValueRepresentation and Value and
VocabularyEncodingScheme are the same as in the DCAM. Value, a subclass of
Resource, inherits the association relationship between Resource and URI, allowing a
Value to be identified by a URI (equivalent to a value being identified by a value URI in the
DCMI resource model).

VocabularyTerm is a subclass of Value based on the function of a vocabulary term as a
value of a property. VocabularyTerm, a subclass of Value, may be associated with a
VocabularyEncodingScheme.

The class Description is still related to a resource by an association relationship, and
Resource is related to URI (previously resource URI in the DCMI description model).
Specific URIs (e.g. resource URI, or syntax encoding scheme URI) are replaced by a single
class URI which represents any URI. Through inheritance, classes that are subclasses of
Resource (e.g. SyntaxEncodingScheme) can be associated with a URI.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108385

7.2 DCMI Metadata Terms Diagram

Figure 4: A DCMI Metadata Terms diagram as a modified version of the DCMI description model of the

DCAM.

The hierarchy of classes in the DCMI Metadata Terms diagram represents the ‘typology of
DCMI metadata terms’ (xii). DCMI metadata terms include elements, element refinements,
encoding schemes and vocabulary terms (xiii).

The hierarchical relationship between DCMI metadata terms and specific types of terms is
not included in either the text or the diagrams of the DCAM.

Our diagram uses generalisation relationships between terms. The class DCMITerm
represents a DCMI metadata term. DCMITerm has three subclasses: Property,
EncodingScheme and VocabularyTerm. VocabularyEncodingScheme and
SyntaxEncodingScheme are subclasses of EncodingScheme. Our diagram includes
association relationships to relate:

• two instances of Property with cardinality zero or more (either way);
• an instance of Property with an instance of EncodingScheme with cardinality zero or
more (either way);
• two instances of VocabularyTerm, with cardinality zero or more (either way). This
models hierarchical relationships between terms (e.g. still image is narrower than image).
We made some design decisions:

• DCMITerm inherits the association relationship of DCMIResource including the
relationship between DCMIResource and URI from the generalisation relationship between
the subclasses DCMITerm and DCMIResource. This means any subclass of DCMITerm (i.e.
Property, EncodingScheme, VocabularyTerm, VocabularyEncodingScheme or
SyntaxEncodingScheme) may be identified by a URI. As all these classes must be
identified by a URI, such a constraint is added.
• The generalisation relationship between class DCMIResource and subclass DCMITerm
enables DCMI metadata statements to be made about the subclasses of DCMIResource (see
the DCMI Metadata Description diagram).

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108385

• DCMITerm and EncodingScheme are abstract classes (denoted by an italicised class
name). An abstract class is a class that cannot have any direct instances.
• The association relationship between Property and EncodingScheme may seem to
contradict that an encoding scheme applies to the value of a property but in the DCMT, an
encoding qualifies a property, not a property value because here a property is not part of a
statement.
• The relationship between a vocabulary term and encoding scheme is shown in the DCMI
Metadata Description diagram. In this diagram, a VocabularyTerm is a subclass of Value
that may be related to a VocabularyEncodingScheme. VocabularyTerm inherits the
relationship between Value and VocabularyEncodingScheme, so an instance of
VocabularyTerm may be related to an instance of VocabularyEncodingScheme.
7.3 DCMI Metadata Semantics Diagram

Figure 5: A DCMI Metadata Semantics diagram as a modified version of the DCMI description model of the

DCAM.

The DCMI defines attributes (some mandatory) to describe Dublin Core Metadata Terms.
We have treat them in three categories: identifier, relation and descriptor. Identifier
attributes identify a metadata term; relation attributes link terms together, and descriptor
attributes describe a metadata term in some way (e.g. with a human-readable label).

We use these attributes as semantics although only two of them are explicitly specified in
the DCAM: refines, which links one property to another property, and broader/narrower
than, which indicates that a class is more general or specific than another vocabulary term.

Identifier attributes (name and URI) are now the class URI and the attributes name,
namespace and URI, in the DCMI Metadata Descriptions diagram, and relation attributes
(refines, qualifies and broader/narrower than) are in the DCMI Metadata Terms diagram.
The remaining description attributes are modeled in the DCMI Metadata Semantics
diagram (Figure 5).

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108385

8 Conclusion
We responded to a problem in real life by working on how to make the DCAM useful to
those systems architects who use UML. We propose some new versions of the DCAM as a
step towards being able to develop a UML meta-model so that UML users will be able to
work with conformant Dublin Core Application Profiles that use RDF. We look forward to
some interesting discussions.
9 References

i Object Management Group (OMG). “The Unified Modeling Language”, 2006. Available:
<http://www.uml.org/>.
ii W3C, “Resource Description Framework”, 2006. Available: <http://www.w3.org/RDF/>.
iii Powell, A, et al., “DCMI Abstract Model”, March 2005. Available:
<http://www.dublincore.org/documents/abstract-model/>.
iv Baker, T., “A Grammar of Dublin Core,” October 2000. D-Lib Magazine, vol. 6, no. 10.
Available: <http://dlib.anu.edu.au/dlib/october00/baker/10baker.html>.
v Baclawski, K., et al, “Extending UML to support ontology engineering for the semantic
web,” in Proceedings of the Fourth International Conference on UML, 2001. Available:
<http://www.springerlink.com/media/h82chcawxg7qvj4hugdh/contributions/b/0/e/k/b0ekn
07kqfy23hca.pdf>.
vi Nilsson, M, “Re: Interpretations of the DC Abstract Model”, December 2005. Available:
<http://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=ind0512&L=dc-
architecture&T=0&X=1DCDC51CF29433904C&Y=sarah.pulis%40latrobe.edu.au&P=618
>.
vii DCMI Architecture WG, “Issues with (and suggested changes to) the DCMI Abstract
Model” 2005. Available: <http://dublincore.org/architecturewiki/AMIssues>.
viii Nilsson, M., (2006, January) Re: Interpretations of the DC Abstract Model. Available:
<http://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=ind0601&L=dc-
architecture&T=0&X=57B2E87E7AE56D7B04&Y=sarah.pulis%40latrobe.edu.au&P=679
>.
ix (same as 6).
x (same as 7).
xi (same as 8).
xii DCMI Usage Board. “DCMI Grammatical Principles”, 2003. Available:
<http://www.dublincore.org/usage/documents/2003/11/18/principles/>.
xiii Powell, A. & Wagner, H, (eds.), “Namespace Policy for the Dublin Core Metadata
Initiative”, 2001. Available: <http://dublincore.org/documents/dcmi-
namespace/index.shtml>.

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108385

