
Abstract:
This article presents a basic proposal for the

automation and use of thesauri for information
retrieval in distributed environments through web
services based on the Resource Description
Framework (RDF) architecture. It begins by reviewing
the proposals for descriptive tagging for thesauri
coding that have appeared over the past four years.
This is followed by a description of the basic
architecture of a thesaurus implemented in Java. The
article concludes by reviewing different
communication and data exchange protocols, together
with applications that can be used to implement this
service. The text is accompanied by the computer
application that has been developed.

Keywords:
Thesauri, thesaurus managing, software agents,

semantic web, web services

1. Introduction

A thesaurus, as understood in classical information
sciences like library sciences, is a combinatory tool
consisting in lists of terms representing a determined
technical or scientific domain and semantic relations
linking those terms. These semantic relations cover
three main types, equivalence, association and
hierarchy which gives these kind of structures a
flexible and highly descriptive behaviour. We consider
these features as specially useful in a Information
Retrieval techniques demanding environment like the
Internet.

There are some internationally accepted directives
aimed at guiding the construction of thesaurus, among
which we can highlight ISO 2788:1986 and
Z39.19:1993, its later evolution. According to these
directives thesaurus are in fact linguistic tools aimed

at providing IR capabilities to information systems,
and although we can find some analogies with other
tools like ontologies, the thesaurus structure is quite
simpler and the difference between lexical and
semantic levels is quite less steep than in the former
case.

The use of thesaurus in specialised centres has been
and still is very common in lots of specialised
information centres. Anyhow modern automatic IR
systems have not considered thesaurus as a way of
semantic disambiguation or normalization of terms.
Nevertheless some IR projects dealing with digitized
linguistic resources have had great relevance during
the 90’s, including the world famous Wordnet. To a
lesser extent thesaurus are also present in some of
these projects which lead us to believe that using
thesaurus in Information Retrieval is still possible and
might yield interesting results.

Our first idea was to propose a way of designing an
information service focused on acting as a middle
layer between thesaurus and the client machines trying
to access and operate with it. We saw this task as one
among some others involved in the Information
Retrieval process, and then decided to use some of the
principles of distributed architectures in its creation,
although maintaining our first intention of designing
an independent web service. To cope with this task we
first had to import the thesaurus to a machine readable
format and implementing the basic access and query
functionalities.

2. Thesaurus mark-up models

Before thinking of the implementation of thesauri
server software a study of the main thesaurus
codification initiatives was done. Among these
initiatives we are to highlight those coming from the
semantic web sphere. One of the facts we appreciated

Thesauri managing and Software Agents:
a proposed architecture

José Ramón Pérez Agüera
1Departamento de Sistemas Informáticos y

Programación UCM.
jose.aguera@fdi.ucm.es

Rodrigo Sánchez Jiménez
Departamento de Biblioteconomía y

Documentación UCM.
rsanchezj@ccinf.ucm.es

DC-2005: Proc. Int. Conf. on Dublin Core and Metadata Applications 2005 ~119

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108100

was that almost all the thesaurus used till date had
been marked up in some way, which made the idea of
using them in a machine readable framework much
more feasible. XML was clearly the candidate to mark
up those thesauri, although there was still the need to
decide from the various proposals based on it.

2.1. RDF/XML

The apparition of RDF is a turning point in the task
of creating a semantic infrastructure to support a better
use of information on the Internet. RDF is intended to
represent resources in a way that makes them
machine-readable and at the same time preserves their
exact original meaning.

2.1.1 RDF and thesaurus codification

It did not take long for researchers to discover and
begin to use RDF’s capabilities to describe resources
in the task of describing thesauri. From 2000 on
various initiatives succeeded, although we will only
talk in detail of CERES as the main precursor of these
initiatives [1].

CERES was supported by the California Resources
Agency [2] and was defined through the American
standard of monolingual thesauri (Z39.19:1993). The
goal of this initiative was to proportionate a method
for thesauri exchange between applications. The
reason behind the choice of RDF/XML was the natural
capabilities of this language to express the various
types of relations existing between concepts in a
thesaurus.

Resources are treated as instances of Descriptor,
Category or EntryTerm, which are at the same time
subtypes of Term. This implementation uses
typedNode’s for every resource and a set of
propertyTypes available for every Term, including
scope notes, cataloguer notes, historical notes, source
and status of the term, broader, narrower, related
terms…etc.

RDF’s application to thesauri is quite simple and
functional which led to the adoption of this model by
some important institutions [3]. Nevertheless now
days none of these institutions still uses that model,
which might be explained by the proliferation of W3C
recommendations on knowledge organization systems
and the general improvements achieved by mark-up
technologies, all of which led to the adoption of newer
more elaborated models.

2.2 OWL

The appearance of OWL, (Ontology Web
Language) is to be considered a new turn point in
knowledge organization oriented mark-up languages.

OWL’s creators inspired in the earlier developments of
DAML-OIL, which gives OWL its descriptive logic
flavour. OWL is a mark-up language intended to
provide us with the capabilities of publishing
ontologies on the web.

OWL was designed to be built over RDF and
written in XML, although being able to represent
ontologies with a much richer vocabulary and a
stronger syntax than RDF [4]. This enables OWL to
explicitly represent the meaning of terms from an
existing vocabulary and expressing the relations
existing between them [5].

OWL is divided in three sub-languages OWL-Lite,
OWL-DL y OWL-Full, each of which provides us
with an increasingly complex work set, from the
simplicity of OWL-lite to the full-fledged ontology
capabilities of OWL.-Full. OWL-lite provides us with
the basic features necessary to code ontologies and
many other simpler knowledge systems, and
represents as the W3C states, the fastest way of
migrating thesaurus and other taxonomies to a
semantic web environment [6] .

As well as in the case of RDF we can find some
concrete proposals leading to the use of OWL in the
task of representing thesauri. We can highlight D.H.
Fischer’s on the representation of the German National
Cancer Institute, available on the Internet [7]. One of
the most interesting points of these proposals is the
use of OWL-Lite as a way of converting a thesaurus in
an ontology, which leads Fischer to plan the very
structure of these linguistic tools.

2.3 SKOS-Core

Now days we can find a very specific proposal
form thesauri representation in the framework of the
semantic web, SKOS-Core. SKOS-Core is an rdf
schema intended to represent thesauri and other
similar knowledge organization systems. This poses
the problem in the same terms that CERES did,
although this proposal apart from being developed in
the environment of W3C’s activities provides us with
more elaborated mechanisms.

The main goal of SKOS-Core is to provide a way
of migrating knowledge organization systems to the
field of the semantic web. Apart from this it also
allows to build up simple conceptual schemes to be
used on the web. SKOS-Core is intended to be a
complement to OWL, providing us a basic framework
for making concept schemes but without the semantic
strictness imposed by OWL. We can talk of it in terms
of a further simplification of OWL-Lite, which on the
other hand provides easier access to a wide number of
people to this kind of knowledge organization systems.

SKOS-Core is thus a simple model of easy use and
fast learning ready for a greater number of people,

120 DC-2005, September 12-15 - Madrid, Spain

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108100

which can help on generalised semantic web
expansion in contrast with the current isle-like
spreading model [8].

The basic idea behind this RDF schema is to
provide a way of expressing concepts and concept
schemes. A concept might be thought of as a unit of
thinking that can be defined or described. At the same
time a concept scheme is plainly a collection of
concepts. A concept might have a series of associated
tags, where every tag is a word sentence or symbol
used to refer to that concept.

Each concept can only have a single preferred tag,
which is known as a descriptor or preferred term, and
an unlimited number of alternative tags known as non-
descriptors or non-preferred terms, a common use
terminology in the field of controlled vocabularies.

Apart from this we can find the usual thesaurus
kind of relations, that is, equivalence, hierarchy and
association all of which can be assigned to concepts
belonging to a same concept scheme, being a concept
scheme the equivalent of a thesaurus with relations
being non syntactic but semantic ones. At the same
time we can map the equivalences of terms belonging
to different thesauri, a very useful feature for
knowledge exchange.

With SKOS-Core we can identify every concept
using an URI, which gives it independence over any
specific thesaurus. Afterwards we can associate
multiple non-preferred terms and a preferred term to
connect with the concept. Scope notes are also easy to
include, and can provide a comprehensive description
of the concept.

Apart from defining concepts SKOS provides
capabilities to define semantic relations, like
hierarchic and associative ones. The properties
skos:related, skos:narrower and skos:broader are
grouped around the property skos:semanticRelation.
The last thesaurus typical relation, the equivalence
one, is already considered as an alternative term, that
is, the skos:altLabel property.

SKOS-Core does also provide ways of representing
concepts in other languages through the use of a
special multilingual mark-up, which allows for
duplication of both preferred and not preferred term
labels as many times as necessary. All these properties
provide us with the means to describe almost every
thesaurus with ease, but SKOS provides some more
instruments to accurately defining the previous
semantic relations.

skos:broaderGeneric and skos:narrowerGeneric can
specify inclusive relations between concepts. To
define a concept as an instance of another
skos:broaderInstantive and skos:narrowerInstantive
can be used. To express a concept being part of others
skos:broaderPartitive and skos:narrowerPartitive will
suffice to further develop the idea of subordination.

skos:relatedHasPart and skos:relatedPartOf on the
other hand express more precise associative relations.

To end with this review of the W3C proposal on
thesauri we should say that SKOS-Core does also
allow defining top concepts or hierarchy heads
through the skos:TopConcept property which can be
use to establish facets for a given thesaurus.

2.4 Other mark-up models for thesauri
representation on the Internet.

Although the main goal of this paper is to set
thesauri automatization in the context of the semantic
web we can’t avoid briefly mentioning other relevant
thesauri automatization and knowledge organization
initiatives.

2.4.1 Zthes

Zthes describes an abstract model for the
representation and search of thesauri just like the ISO
2788 norm prescribes [9]. The basic idea behind this
proposal is that of planning a model that enables the
implementation of thesauri in a way that permits
access through the Z39.50 and SRW protocols. This
proposal, given the peak of mark-up technologies,
does also offer a DTD for thesaurus representation,
although it is mainly a Z39.50 focused initiative.

2.4.2 Topic Maps

We have a second proposal derived from topic
maps, which is a standard for conceptual browsing
that enables the representation of thesauri. This quite a
venerable proposal, first developed during the times of
SGML and HyTime, although it has lately been
renewed through the adoption of a DTD for Topic
Map representation [10].

2.4.3 SKOS-Core vs. Zthes y Topic Maps

Both Topic Maps and Zthes come from old
development lines, which has impelled them to adapt
to the XML trends lately. Nevertheless these are
perfectly functional technologies, although are
somehow limited to work in narrower application
fields, which contrasts with the standardization
prospective of the W3C initiatives. This is the main
reason that made us choose an RDF/OWL/SKOS-
Core line of work.

3. A Thesauri managing agent architecture

Once we have chosen SKOS-Core to code our
thesauri we can describe the design and
implementation of the thesauri server core. The core

DC-2005: Proc. Int. Conf. on Dublin Core and Metadata Applications 2005 121

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108100

of the system is composed by two main classes due to
manage the basic functionalities to access the
thesaurus [11], “Thesaurus” and “Concept”, and two
more due to give us basic conceptual functionalities,
“NormalizarTermino” (Normalize Term) and
“Searcher”.

The Thesaurus class is designed to abstractly
represent a thesaurus modelling it to be instantiated
and used by every other class needing it. The
Thesaurus class contains a TreeMap as a class attribute
ready to store data relating to the thesaurus, where the
key / value couple is defined by descriptors and non-
descriptors (keys) that act as entries to the thesaurus,
and Concept objects which refer to the concepts
behind the surface level (thus being values of those
keys). Each preferred or non-preferred key contains a
link to the value, a given Concept object.

As we said before the Thesaurus class uses Concept
type objects to abstract the concept of descriptor. This
Concept object includes attributes related to the
components belonging to a given descriptor in
traditional thesauri. This way we can find a String [12]
related to the preferred term that usually represents the
descriptor and thus its underlying concept. At the same
time two more String variables are use to translate the
term to French and Spanish. A further String holds
scope notes about meaning and use of the current
concept during indexing. Finally a series of lists
implemented through ArrayList, and referring to
related terms, broader, narrower and non-descriptors
are also part of the Object.

Through this structure we can define a concept in a
very similar way to other digitalized linguistic
resources used in Information Retrieval and Natural
Language Processing during the last 10 years or so,
representing it through semantic relations with other
concepts, although we still maintain the basic features
required by the ISO 2788 standards.

Both classes implement the Serializable interface,
which is related to the fact that both the thesaurus and
its descriptors are stored in the same file, where it can
wait for further usage after runtime is finished. Every
time the application is initialized those classes are
loaded in memory to be used during execution. This
does also allow for multiple simultaneous thesauri
loading, resulting in cross thesauri concept-mapping
capabilities. This implementation does not excessively
affect efficiency and allows us to maintain an object
oriented (developer-friendly) focus on the question of
design and implementation.

Given this core we have designed a series of classes
to illustrate the possible operations to be executed on a
thesaurus. The class NormalizarTermino lets us
automatically normalize concepts against the
thesaurus. Having an entry composed of a single word
or set of words this class is able to return the terms

normalizing concepts represented by the submitted
term or terms. This process is done over the complete
thesaurus using preferred and non-preferred terms as
entry-points. This way we can guarantee the coherence
of the normalization process with respect to the
thesaurus we are using. At the same time it allows us
to retrieve related terms for every descriptor, which
might be used in query expansion tasks.

The Searcher class retrieves query results in a
RDF/SKOS-Core format with the full set of
information available for the current term. One of this
query-response examples is given bellow:

jose@leviathan:/eclipse/workspace/ThesaurusAgen
t$ java thes.Searcher cáncer

* ** *** ****

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-
rdf-syntax-ns#”

xmlns:skos=”http://www.w3.org/2004/02/skos/core#”
>

<skos:Concept
rdf:about=”http://spines/neoplasmas%20malignos”>

<skos:broader
rdf:resource=”http://spines/enfermedades”/>

<skos:related
rdf:resource=”http://spines/transformación%20neoplás
ica%20celular”/>

<skos:prefLabel>neoplasmas
malignos</skos:prefLabel>

<skos:prefLabel xml:lang=”en”>malignant
neoplasms</skos:prefLabel>

<skos:prefLabel xml:lang=”fr”>neoplasmes
malins</skos:prefLabel>

<skos:related
rdf:resource=”http://spines/neoplasmas%20benignos”/
>

<skos:related
rdf:resource=”http://spines/hábito%20de%20fumar”/>

<skos:related
rdf:resource=”http://spines/enfermedades%20incurabl
es”/>

<skos:altLabel>cáncer</skos:altLabel>

<skos:altLabel>carcinoma</skos:altLabel>

122 DC-2005, September 12-15 - Madrid, Spain

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108100

<skos:related
rdf:resource=”http://spines/i+d%20médica”/>

<skos:related
rdf:resource=”http://spines/neoplasmas%20experimen
tales”/>

<skos:related rdf:resource=”http://spines/pechos”/>

<skos:narrower
rdf:resource=”http://spines/neoplasmas%20inducidos
%20por%20radiación”/>

<skos:related
rdf:resource=”http://spines/antineoplásicos”/>

<skos:related
rdf:resource=”http://spines/enfermedades%20de%20la
%20mama”/>

<skos:related
rdf:resource=”http://spines/enfermedades%20gastroint
estinales”/>

<skos:broader
rdf:resource=”http://spines/neoplasmas”/>

<skos:related
rdf:resource=”http://spines/condiciones%20precancer
osas”/>

<skos:related
rdf:resource=”http://spines/enfermedades%20ginecoló
gicas”/>

<skos:related
rdf:resource=”http://spines/cancerígenos%20ambienta
les”/>

<skos:related
rdf:resource=”http://spines/enfermedades%20del%20a
parato%20genital”/>

<skos:related rdf:resource=”http://spines/amianto”/>

<skos:narrower
rdf:resource=”http://spines/leucemias”/>

<skos:narrower
rdf:resource=”http://spines/sarcoma”/>

</skos:Concept>

</rdf:RDF>

As we can see every matching query is answered

with a RDF document defined by the SKOS-Core
schema referring to the corresponding concept [13].

The main target of both classes is to show some
working examples of the use of the functionalities
offered by Thesaurus and Concept, both for human
and machine queries, in the case of normalization or
directly for the use of automatic indexing systems, in
the case of Searcher. Using this basic description of
the classes we can define a basic core for a thesauri
server implementing both the knowledge structure (the
thesaurus) and the operations to be executed on it.

3.1 Inner functionalities of the Thesauri server

As we have stated elsewhere our view of a thesauri
server goes far beyond the use of the thesaurus and
also deals with maintenance and actualization. The
need for thesauri actualization is a problem that has
been observed in the Librarian Sciences literature.
Blanca Gil highlights the capabilities of the thesauri
structure, which might be enlarged and modified
according to the needs derived from its continuous use
[14]. According to this we tried to develop a system in
which automatic actualization of terminology was
possible, using transactional analysis of user’s queries
or any other means.

The idea behind all this is the possibility of creating
intelligent agents that learn user ’s preferences
referring to terminology, as well as being capable of
processing thesauri preferred and non-preferred terms
as queries to be posed to any collection and evaluated
to check its retrieval capabilities with the final goal of
automatically performing thesaurus actualization.

4. Communication with other applications

The thesauri server enables us to use thesauri in the
environment of both manual an automatic indexing
and as a hole in any Information Retrieval system.
Having said this we still have the need of adopting a
standard to enable the use of the thesaurus by other
applications in IR distributed systems.

In the next section we briefly describe some of the
various remote access formulas to be used by a
thesauri server. We will discuss the options to be taken
in order to provide the server with both flexibility and
wide communication capabilities.

4.1 Communicating using FIPA-RDF

The software agents’ paradigm provides us with a
solid background in which we can base
communications between informatic applications.
Because of this the first thing to do is weighting the
possibility of considering our thesaurus server as an
agent. According to this we can consider the system as

DC-2005: Proc. Int. Conf. on Dublin Core and Metadata Applications 2005 123

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108100

an agent providing services relating to term
normalization to be used by other IR applications such
as search engines, automatic indexers…etc.

We can introduce one of these external applications
as another agent, an automatic indexing agent. This
agent would need to check the proper form of terms
before statistically or otherwise treating words in a
document collection. To achieve this it should
communicate with the thesaurus managing agent so It
can retrieve the needed normalizations. Thus both
agents communicate and cooperate to cope with a
singular problem (conceptual normalization of index
terms).

The FIPA standard divides communication between
agents in “communication events”, “interaction
protocols” and “content languages”. Communication
events are composed of the blocks in which a dialog
between two applications can be divided in. They
define the meaning of messages apart from any
particular context. The interaction protocols define a
message sequence representing the complete dialog
between agents. Finally content languages establish
the language to be used for the message content.

Our thesauri server, which we will treat as a
thesauri managing agent in this section, can adopt this
way of communicating with other applications, thus
being able to share both contents and operations’
results. Using a FIPA-RDF message sequence we can
establish a coordinated dialog between two or more
agents, thus setting the thesauri management agent as
the centre of a multi-agent system. Further more, this
way of communicating allows us to directly use RDF
without the need of transforming the original RDF
documents, which perfectly matches the chosen
thesauri mark-up technology (SKOS-Core).

4.2 Conceptual normalization web services using
soap

There is another way of posing the problem of
communication between applications, apart from the
ones derived from the software agents’ paradigm. In
the last years we have seen the uprising of web
services closely bounded to the development of mark-
up languages. Namely XML based web services have
proved to be a feasible approach to the problem of
cross-application information sharing and function
invoking, going beyond Operative Systems and
platforms. Although XML web services are usually
independent from each other, we can find a way of
bounding them together so that they cooperate in a
determined task.

Web services are not intended to substitute common
applications in most of heavy-duty or medium-size
operations, but constitute an interesting alternative to
solve small-sized operations, such as exchange of

information or request of minor information
processing, such as retrieving the ISBN number of a
given title of book, retrieving results of a query…etc.
We can find a very good example of these applications
in Google’s SOAP based web service, which facilitates
the use of it’s search engine for various tasks [15].

In our case we will use web services to let various
external applications access to the thesaurus
normalization and query functions already described.
The main idea behind this is to use these
functionalities without having to worry about the inner
workings of the system, a “black box approach” if you
wish.

To implement such a service we can use SOAP
(Simple Object Access Protocol) a protocol proposed
by the W3C based upon XML and designed to make
structured information exchange between applications
easy. SOAP does permit (as well as FIPA-RDF) RDF
code embedding, so that we can include it in the
messages’ body [16]. This way we can communicate
with a different array of applications without having to
change anything of the original thesauri server
responses.

5. Conclusions

As we can see it is possible to give our thesauri
managing application very good communicating
capabilities. The target of the various query interfaces
presented before is mainly that of widening the
number of applications able to use thesauri as a
knowledge base for various IR tasks (or any others
deemed convenient), given the fact that thesauri are a
very common and standardized way of coding
knowledge.

Notes
[1] We can find an excellent review of the various

thesaurus mark-up proposals in
http://www.w3c.rl.ac.uk/SWAD/deliverables/8.2.
html#4.1

[2] Available in http://ceres.ca.gov/thesaurus/RDF.html

[3] http://ceres.ca.gov/thesaurus/

[4] http://wwvw.w3schools.com/rdf/rdf_owl.asp

[5] http://www.niso.org/standards/standarddetail.cfm?
stdid=518

[6] http://www.w3.org/TR/2004/REC-owl-features-
20040210/

[7] http://www.mindswap.org/2003/CancerOntology/

124 DC-2005, September 12-15 - Madrid, Spain

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108100

[8] Eva M. Méndez Rodríguez (2002) Metadatos y
recuperación de información: estándares,
problemas y aplicabilidad en bibliotecas digitales,
Gijón, Trea

[9] http://zthes.z3950.org/

[10] http://www.topicmaps.org/

[11] The word class comes from the terminology used
in object oriented programming. The application
was implemented using Java, what explains the
extensive use of object oriented terminology
throughout this text.

[12] A String is a data type referring to any set of
characters.

[13] RDF generation was done using Jena 2.1

[14] Gil Urdiciain, Blanca (1996) Manual de lenguajes
documentales, Madrid, Noesis, p. 215–220.

[15] http://www.google.com/apis/.

[16] Ogbuji, Uche, Using RDF with SOAP: beyond
remote procedure calls, http://www-
106.ibm.com/developerworks/webservices/librar
y/ws-soaprdf/

DC-2005: Proc. Int. Conf. on Dublin Core and Metadata Applications 2005 125

This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and cite the source. https://doi.org/10.23106/dcmi.952108100

	Libro Actas DC 1
	Libro Actas DC 2
	Libro Actas DC 3
	Libro Actas DC 4
	Libro Actas DC 5
	Libro Actas DC 6
	Libro Actas DC 7

